MMVマウスムーブ関数

本ページには広告が含まれています。

マウスカーソルを指定した座標に移動します。MMV関数でカーソルを移動させ続けてもWindowsのスリープ防止にはならないので注意してください。

構文
  1. void = MMV( x, y, ms )
引数
x, y (Integer)必須
位置
ms (Single = 0)省略可
実行までの待ち時間 (ミリセカンド)
戻り値

カーソル移動を滑らかにする

UWSC
PROCEDURE mouseMove(x1, y1, x2, y2, sec = 1)
	DEF_DLL GetTickCount(): dword: kernel32
	DIM t = GetTickCount()
	DIM dx = (x2 - x1) / 100
	DIM dy = (y2 - y1) / 100
	MMV(x1, y1)
	FOR i = 0 TO 100
		MMV(x1 + dx * i, y1 + dy * i)
		REPEAT
		UNTIL GetTickCount() - t >= i * (sec / 100) * 1000
	NEXT
	MMV(x2, y2)
FEND

使い方

  1. 画像image.bmpが見つかったらその場所にカーソルを移動する。

    UWSC
    IF CHKIMG("image.bmp",,,,,, -1) THEN MMV(G_IMG_X, G_IMG_Y)
  2. 円を描く。

    • Main
    • FUNCTIONS
    UWSC
    DIM a = G_SCREEN_W / 2
    DIM b = G_SCREEN_H / 2
    DIM r = 100
    
    FOR theta = 0 TO 360
    	DIM x = a + r * COS(degToRad(theta))
    	DIM y = b + r * SIN(degToRad(theta))
    	MMV(x, y)
    	SLEEP(0.001)
    NEXT
    UWSC
    //////////////////////////////////////////////////
    // 【引数】
    //   arr : 追加される配列(参照引数) 
    //   tmp : 追加する配列 
    // 【戻り値】
    //   追加した後の配列の要素数 
    //////////////////////////////////////////////////
    FUNCTION arrayMerge(Var arr[], tmp[])
    	FOR n = 0 TO UBound(tmp)
    		arrayPush(arr, tmp[n])
    	NEXT
    	RESULT = UBound(arr)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列。参照引数。 
    // 【戻り値】
    //   引数に指定した配列の最後の要素 
    //////////////////////////////////////////////////
    FUNCTION arrayPop(Var array[])
    	DIM n = UBound(array)
    	DIM res = array[n]
    	RESIZE(array, n-1)
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 要素を追加する配列(参照引数) 
    //   values : 追加する要素をvalue1から指定 
    // 【戻り値】
    //   処理後の配列の要素の数 
    //////////////////////////////////////////////////
    FUNCTION arrayPush(var array[], value1 = EMPTY, value2 = EMPTY, value3 = EMPTY, value4 = EMPTY, value5 = EMPTY, value6 = EMPTY, value7 = EMPTY, value8 = EMPTY, value9 = EMPTY, value10 = EMPTY, value11 = EMPTY, value12 = EMPTY, value13 = EMPTY, value14 = EMPTY, value15 = EMPTY, value16 = EMPTY)
        DIM i = 1
        WHILE EVAL("value" + i) <> EMPTY
    	  DIM res = RESIZE(array, UBound(array) + 1)
    	  array[res] = EVAL("value" + i)
    	  i = i + 1
    	WEND
    	RESULT = LENGTH(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 逆順にする配列 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE arrayReverse(Var array[])
    	DIM cnt = LENGTH(array)
    	FOR i = 0 TO INT(cnt / 2) - 1
    		swap(array[i], array[cnt-(i+1)])
    	NEXT
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   needle : 検索する値 
    //   haystack : 配列 
    // 【戻り値】
    //   needleが見つかった場合に配列のキー 
    //////////////////////////////////////////////////
    FUNCTION arraySearch(needle, haystack[])
    	DIM i = 0
    	FOR item IN haystack
    		IFB item = needle THEN
    			RESULT = i
    			EXIT
    		ENDIF
    		i = i + 1
    	NEXT
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    // 【戻り値】
    //   arrayの最初の値。配列arrayは、要素一つ分だけ短くなり、全ての要素は前にずれます。 
    //////////////////////////////////////////////////
    FUNCTION arrayShift(Var array[])
    	DIM res = array[0]
    	SHIFTARRAY(array, -1)
    	RESIZE(array, UBound(array) - 1)
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 要素を加えられる配列 
    //   values : 加える値をvalue1から順に指定 
    // 【戻り値】
    //   処理後の配列の要素の数 
    //////////////////////////////////////////////////
    FUNCTION arrayUnshift(var array[], value1 = EMPTY, value2 = EMPTY, value3 = EMPTY, value4 = EMPTY, value5 = EMPTY, value6 = EMPTY, value7 = EMPTY, value8 = EMPTY, value9 = EMPTY, value10 = EMPTY, value11 = EMPTY, value12 = EMPTY, value13 = EMPTY, value14 = EMPTY, value15 = EMPTY, value16 = EMPTY)
    	DIM tmp[-1]
    	DIM i = 1
    	WHILE EVAL("value" + i) <> EMPTY
    		arrayPush(tmp, EVAL("value" + i))
    		i = i + 1
    	WEND
    	arrayMerge(tmp, array)
    	RESIZE(array, UBound(tmp))
    	SETCLEAR(array, EMPTY)
    	FOR i = 0 TO UBound(tmp)
    		array[i] = tmp[i]
    	NEXT
    	RESULT = LENGTH(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   bin : 2進数 
    //   signFlg : 符号付きならばTrue 
    // 【戻り値】
    //   10進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION binToDec(bin, signFlg = TRUE)
    	DIM dec = 0
    	DIM decimalFlg = IIF(POS(".", bin), TRUE, FALSE)
    	IFB COPY(bin, 1, 1) = "1" AND signFlg THEN
    		DIM msb = IIF(decimalFlg, POS(".", bin) - 1, LENGTH(bin))
    		DIM lsb = IIF(decimalFlg, POS(".", bin) - LENGTH(bin), 0)
    		DIM dec2 = POWER(2, msb) - 1
    		FOR i = -1 TO lsb STEP -1
    			dec2 = dec2 + POWER(2, i)
    		NEXT
    		DIM a = binToDec(bin, FALSE)
    		DIM b = dec2
    		dec = -1 * (bitXor(a, b) + POWER(2, lsb))
    	ELSE
    		IFB decimalFlg THEN
    			DIM integer = COPY(bin, 1, POS(".", bin) - 1)
    			DIM decimal = COPY(bin, POS(".", bin) + 1)
    			FOR i = 1 TO LENGTH(decimal)
    				dec = dec + COPY(decimal, i, 1) * POWER(2, -1 * i)
    			NEXT
    		ELSE
    			integer = bin
    		ENDIF
    		FOR i = 1 TO LENGTH(integer)
    			dec = dec + COPY(integer, i, 1) * POWER(2, LENGTH(integer) - i)
    		NEXT
    	ENDIF
    	RESULT = dec
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arg1 : 数値1(10進数) 
    //   arg2 : 数値2(10進数) 
    // 【戻り値】
    //   2つの数値のビット毎の論理積 
    //////////////////////////////////////////////////
    FUNCTION bitAnd(arg1, arg2)
    	DIM args[1] = arg1, arg2
    	DIM bins[1]
    	DIM decimals[1]
    	DIM integers[1]
    	DIM keta[1]
    	IFB ABS(arg1) <> arg1 OR ABS(arg2) <> arg2 THEN
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	FOR i = 0 TO 1
    		bins[i] = decToBin(args[i])
    		decimals[i] = 0
    		IFB POS(".", bins[i]) <> 0 THEN
    			integers[i] = COPY(bins[i], 1, POS(".", bins[i]) - 1)
    			decimals[i] = COPY(bins[i], POS(".", bins[i]) + 1)
    		ELSE
    			integers[i] = bins[i]
    		ENDIF
    	NEXT
    	keta[0] = IIF(LENGTH(integers[0]) > LENGTH(integers[1]), LENGTH(integers[0]), LENGTH(integers[1]))
    	integers[0] = strPad(integers[0], keta[0], "0", LEFT)
    	integers[1] = strPad(integers[1], keta[0], "0", LEFT)
    	keta[1] = IIF(LENGTH(decimals[0]) > LENGTH(decimals[1]), LENGTH(decimals[0]), LENGTH(decimals[1]))
    	decimals[0] = strPad(decimals[0], keta[1], "0", RIGHT)
    	decimals[1] = strPad(decimals[1], keta[1], "0", RIGHT)
    	DIM bin = ""
    	FOR i = 1 TO keta[0]
    		bin = bin + (VAL(COPY(integers[0], i, 1)) AND VAL(COPY(integers[1], i, 1)))
    	NEXT
    	bin = bin + "."
    	FOR i = 1 TO keta[1]
    		bin = bin + (VAL(COPY(decimals[0], i, 1)) AND VAL(COPY(decimals[1], i, 1)))
    	NEXT
    	RESULT = binToDec(bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 10進数もしくは2進数の値 
    //   bit : ビット 
    // 【戻り値】
    //   ビットを反転した値 
    //////////////////////////////////////////////////
    FUNCTION bitNot(num, bit = EMPTY)
    	IFB isString(num) THEN
    		DIM res = ""
    		FOR i = 1 TO LENGTH(num)
    			DIM str = COPY(num, i, 1)
    			IFB str = "0" OR str = "1" THEN
    				res = res + (1 - VAL(str))
    			ELSE
    				res = res + str
    			ENDIF
    		NEXT
    		RESULT = res
    	ELSE
    		DIM exponent = IIF(bit = EMPTY, CEIL(LOGN(2, num + 1)), bit)
    		RESULT = POWER(2, exponent) - num - 1
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arg1 : 数値1(10進数) 
    //   arg2 : 数値2(10進数) 
    // 【戻り値】
    //   2つの数値のビット毎の排他的論理和 
    //////////////////////////////////////////////////
    FUNCTION bitXor(arg1, arg2)
    	DIM args[1] = arg1, arg2
    	DIM bins[1]
    	DIM decimals[1]
    	DIM integers[1]
    	DIM keta[1]
    	IFB ABS(arg1) <> arg1 OR ABS(arg2) <> arg2 THEN
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	FOR i = 0 TO 1
    		bins[i] = decToBin(args[i])
    		decimals[i] = 0
    		IFB POS(".", bins[i]) <> 0 THEN
    			integers[i] = COPY(bins[i], 1, POS(".", bins[i]) - 1)
    			decimals[i] = COPY(bins[i], POS(".", bins[i]) + 1)
    		ELSE
    			integers[i] = bins[i]
    		ENDIF
    	NEXT
    	keta[0] = IIF(LENGTH(integers[0]) > LENGTH(integers[1]), LENGTH(integers[0]), LENGTH(integers[1]))
    	integers[0] = strPad(integers[0], keta[0], "0", LEFT)
    	integers[1] = strPad(integers[1], keta[0], "0", LEFT)
    	keta[1] = IIF(LENGTH(decimals[0]) > LENGTH(decimals[1]), LENGTH(decimals[0]), LENGTH(decimals[1]))
    	decimals[0] = strPad(decimals[0], keta[1], "0", RIGHT)
    	decimals[1] = strPad(decimals[1], keta[1], "0", RIGHT)
    	DIM bin = ""
    	FOR i = 1 TO keta[0]
    		bin = bin + (VAL(COPY(integers[0], i, 1)) XOR VAL(COPY(integers[1], i, 1)))
    	NEXT
    	bin = bin + "."
    	FOR i = 1 TO keta[1]
    		bin = bin + (VAL(COPY(decimals[0], i, 1)) XOR VAL(COPY(decimals[1], i, 1)))
    	NEXT
    	RESULT = binToDec(bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 単位換算する数値 
    //   before : 変換前の単位 
    //   after : 変換後の単位 
    // 【戻り値】
    //   指定した単位に変換した数値 
    //////////////////////////////////////////////////
    FUNCTION convert(num, before, after)
    	HASHTBL unit
    	
    	// 重量
    	unit["g,sg"] = "num * 6.85217658567918 * POWER(10, -5)"
    	unit["g,lbm"] = "num * 2.20462262184878 * POWER(10, -3)"
    	unit["g,u"] = "num * 6.02217 * POWER(10, +23)"
    	unit["g,ozm"] = "num * 3.52739619495804 * POWER(10, -2)"
    	unit["sg,g"] = "num * 1.45939029372064 * POWER(10, +4)"
    	unit["sg,lbm"] = "num * 3.21740485564304 * POWER(10, +1)"
    	unit["sg,u"] = "num * 8.78869644513561 * POWER(10, +27)"
    	unit["sg,ozm"] = "num * 5.14784776902887 * POWER(10, +2)"
    	unit["lbm,g"] = "num * 4.5359237 * POWER(10, +2)"
    	unit["lbm,sg"] = "num * 3.10809501715673 * POWER(10, -2)"
    	unit["lbm,u"] = "num * 2.7316103628429 * POWER(10, +26)"
    	unit["lbm,ozm"] = "num * 1.6 * POWER(10, +1)"
    	unit["u,g"] = "num * 1.66053100460465 * POWER(10, -24)"
    	unit["u,sg"] = "num * 1.13782516695463 * POWER(10, -28)"
    	unit["u,lbm"] = "num * 3.66084421703269 * POWER(10, -27)"
    	unit["u,ozm"] = "num * 5.8573507472523 * POWER(10, -26)"
    	unit["ozm,g"] = "num * 2.8349523125 * POWER(10, +1)"
    	unit["ozm,sg"] = "num * 1.94255938572295 * POWER(10, -3)"
    	unit["ozm,lbm"] = "num * 6.25 * POWER(10, -2)"
    	unit["ozm,u"] = "num * 1.70725647677681 * POWER(10, +25)"
    	
    	// 距離
    	unit["m,mi"] = "num * 6.21371192237334 * POWER(10, -4)"
    	unit["m,Nmi"] = "num * 5.39956803455724 * POWER(10, -4)"
    	unit["m,in"] = "num * 3.93700787401575 * POWER(10, +1)"
    	unit["m,ft"] = "num * 3.28083989501312 * POWER(10, +0)"
    	unit["m,yd"] = "num * 1.09361329833771 * POWER(10, +0)"
    	unit["m,ang"] = "num * 1 * POWER(10, +10)"
    	unit["m,pica"] = "num * 2.36220472440945 * POWER(10, +2)"
    	unit["mi,m"] = "num * 1.609344 * POWER(10, +3)"
    	unit["mi,Nmi"] = "num * 8.68976241900648 * POWER(10, -1)"
    	unit["mi,in"] = "num * 6.336 * POWER(10, +4)"
    	unit["mi,ft"] = "num * 5.28 * POWER(10, +3)"
    	unit["mi,yd"] = "num * 1.76 * POWER(10, +3)"
    	unit["mi,ang"] = "num * 1.609344 * POWER(10, +13)"
    	unit["mi,pica"] = "num * 3.8016 * POWER(10, +5)"
    	unit["Nmi,m"] = "num * 1.852 * POWER(10, +3)"
    	unit["Nmi,mi"] = "num * 1.15077944802354 * POWER(10, +0)"
    	unit["Nmi,in"] = "num * 7.29133858267717 * POWER(10, +4)"
    	unit["Nmi,ft"] = "num * 6.0761154855643 * POWER(10, +3)"
    	unit["Nmi,yd"] = "num * 2.02537182852143 * POWER(10, +3)"
    	unit["Nmi,ang"] = "num * 1.852 * POWER(10, +13)"
    	unit["Nmi,pica"] = "num * 4.3748031496063 * POWER(10, +5)"
    	unit["in,m"] = "num * 2.54 * POWER(10, -2)"
    	unit["in,mi"] = "num * 1.57828282828283 * POWER(10, -5)"
    	unit["in,Nmi"] = "num * 1.37149028077754 * POWER(10, -5)"
    	unit["in,ft"] = "num * 8.33333333333333 * POWER(10, -2)"
    	unit["in,yd"] = "num * 2.77777777777778 * POWER(10, -2)"
    	unit["in,ang"] = "num * 2.54 * POWER(10, +8)"
    	unit["in,pica"] = "num * 6 * POWER(10, +0)"
    	unit["ft,m"] = "num * 3.048 * POWER(10, -1)"
    	unit["ft,mi"] = "num * 1.89393939393939 * POWER(10, -4)"
    	unit["ft,Nmi"] = "num * 1.64578833693305 * POWER(10, -4)"
    	unit["ft,in"] = "num * 1.2 * POWER(10, +1)"
    	unit["ft,yd"] = "num * 3.33333333333333 * POWER(10, -1)"
    	unit["ft,ang"] = "num * 3.048 * POWER(10, +9)"
    	unit["ft,pica"] = "num * 7.2 * POWER(10, +1)"
    	unit["yd,m"] = "num * 9.144 * POWER(10, -1)"
    	unit["yd,mi"] = "num * 5.68181818181818 * POWER(10, -4)"
    	unit["yd,Nmi"] = "num * 4.93736501079914 * POWER(10, -4)"
    	unit["yd,in"] = "num * 3.6 * POWER(10, +1)"
    	unit["yd,ft"] = "num * 3 * POWER(10, +0)"
    	unit["yd,ang"] = "num * 9.144 * POWER(10, +9)"
    	unit["yd,pica"] = "num * 2.16 * POWER(10, +2)"
    	unit["ang,m"] = "num * 1 * POWER(10, -10)"
    	unit["ang,mi"] = "num * 6.21371192237334 * POWER(10, -14)"
    	unit["ang,Nmi"] = "num * 5.39956803455724 * POWER(10, -14)"
    	unit["ang,in"] = "num * 3.93700787401575 * POWER(10, -9)"
    	unit["ang,ft"] = "num * 3.28083989501312 * POWER(10, -10)"
    	unit["ang,yd"] = "num * 1.09361329833771 * POWER(10, -10)"
    	unit["ang,pica"] = "num * 2.36220472440945 * POWER(10, -8)"
    	unit["pica,m"] = "num * 4.23333333333333 * POWER(10, -3)"
    	unit["pica,mi"] = "num * 2.63047138047138 * POWER(10, -6)"
    	unit["pica,Nmi"] = "num * 2.28581713462923 * POWER(10, -6)"
    	unit["pica,in"] = "num * 1.66666666666667 * POWER(10, -1)"
    	unit["pica,ft"] = "num * 1.38888888888889 * POWER(10, -2)"
    	unit["pica,yd"] = "num * 4.62962962962963 * POWER(10, -3)"
    	unit["pica,ang"] = "num * 4.23333333333333 * POWER(10, +7)"
    
    	// 時間
    	unit["yr,day"] = "num * 3.6525 * POWER(10, +2)"
    	unit["yr,hr"] = "num * 8.766 * POWER(10, +3)"
    	unit["yr,mn"] = "num * 5.2596 * POWER(10, +5)"
    	unit["yr,sec"] = "num * 3.15576 * POWER(10, +7)"
    	unit["day,yr"] = "num * 2.7378507871321 * POWER(10, -3)"
    	unit["day,hr"] = "num * 2.4 * POWER(10, +1)"
    	unit["day,mn"] = "num * 1.44 * POWER(10, +3)"
    	unit["day,sec"] = "num * 8.64 * POWER(10, +4)"
    	unit["hr,yr"] = "num * 1.14077116130504 * POWER(10, -4)"
    	unit["hr,day"] = "num * 4.16666666666667 * POWER(10, -2)"
    	unit["hr,mn"] = "num * 6 * POWER(10, +1)"
    	unit["hr,sec"] = "num * 3.6 * POWER(10, +3)"
    	unit["mn,yr"] = "num * 1.90128526884174 * POWER(10, -6)"
    	unit["mn,day"] = "num * 6.94444444444444 * POWER(10, -4)"
    	unit["mn,hr"] = "num * 1.66666666666667 * POWER(10, -2)"
    	unit["mn,sec"] = "num * 6 * POWER(10, +1)"
    	unit["sec,yr"] = "num * 3.16880878140289 * POWER(10, -8)"
    	unit["sec,day"] = "num * 1.15740740740741 * POWER(10, -5)"
    	unit["sec,hr"] = "num * 2.77777777777778 * POWER(10, -4)"
    	unit["sec,mn"] = "num * 1.66666666666667 * POWER(10, -2)"
    	
    	// 圧力
    	unit["Pa,atm"] = "num * 9.86923266716013 * POWER(10, -6)"
    	unit["Pa,mmHg"] = "num * 7.5006168270417 * POWER(10, -3)"
    	unit["atm,Pa"] = "num * 1.01325 * POWER(10, +5)"
    	unit["atm,mmHg"] = "num * 7.6 * POWER(10, +2)"
    	unit["mmHg,Pa"] = "num * 1.33322368421053 * POWER(10, +2)"
    	unit["mmHg,atm"] = "num * 1.31578947368421 * POWER(10, -3)"
    	
    	// 物理的な力
    	unit["N,dyn"] = "num * 1 * POWER(10, +5)"
    	unit["N,lbf"] = "num * 2.2480894309971 * POWER(10, -1)"
    	unit["dyn,N"] = "num * 1 * POWER(10, -5)"
    	unit["dyn,lbf"] = "num * 2.2480894309971 * POWER(10, -6)"
    	unit["lbf,N"] = "num * 4.4482216152605 * POWER(10, +0)"
    	unit["lbf,dyn"] = "num * 4.4482216152605 * POWER(10, +5)"
    	
    	// エネルギー
    	unit["J,e"] = "num * 1 * POWER(10, +7)"
    	unit["J,cal"] = "num * 2.38845896627496 * POWER(10, -1)"
    	unit["J,eV"] = "num * 6.241457 * POWER(10, +18)"
    	unit["J,HPh"] = "num * 3.72506135998619 * POWER(10, -7)"
    	unit["J,Wh"] = "num * 2.77777777777778 * POWER(10, -4)"
    	unit["J,flb"] = "num * 7.37562149277265 * POWER(10, -1)"
    	unit["J,BTU"] = "num * 9.47817120313317 * POWER(10, -4)"
    	unit["J,c"] = "num * 2.39005736137667 * POWER(10, -1)"
    	unit["e,J"] = "num * 1 * POWER(10, -7)"
    	unit["e,cal"] = "num * 2.38845896627496 * POWER(10, -8)"
    	unit["e,eV"] = "num * 6.241457 * POWER(10, +11)"
    	unit["e,HPh"] = "num * 3.72506135998619 * POWER(10, -14)"
    	unit["e,Wh"] = "num * 2.77777777777778 * POWER(10, -11)"
    	unit["e,flb"] = "num * 7.37562149277265 * POWER(10, -8)"
    	unit["e,BTU"] = "num * 9.47817120313317 * POWER(10, -11)"
    	unit["e,c"] = "num * 2.39005736137667 * POWER(10, -8)"
    	unit["cal,J"] = "num * 4.1868 * POWER(10, +0)"
    	unit["cal,e"] = "num * 4.1868 * POWER(10, +7)"
    	unit["cal,eV"] = "num * 2.61317321676 * POWER(10, +19)"
    	unit["cal,HPh"] = "num * 1.55960869019902 * POWER(10, -6)"
    	unit["cal,Wh"] = "num * 1.163 * POWER(10, -3)"
    	unit["cal,flb"] = "num * 3.08802520659405 * POWER(10, +0)"
    	unit["cal,BTU"] = "num * 3.9683207193278 * POWER(10, -3)"
    	unit["cal,c"] = "num * 1.00066921606119 * POWER(10, +0)"
    	unit["eV,J"] = "num * 1.60219000146921 * POWER(10, -19)"
    	unit["eV,e"] = "num * 1.60219000146921 * POWER(10, -12)"
    	unit["eV,cal"] = "num * 3.82676507468522 * POWER(10, -20)"
    	unit["eV,HPh"] = "num * 5.96825606582916 * POWER(10, -26)"
    	unit["eV,Wh"] = "num * 4.45052778185891 * POWER(10, -23)"
    	unit["eV,flb"] = "num * 1.18171470103417 * POWER(10, -19)"
    	unit["eV,BTU"] = "num * 1.51858311338733 * POWER(10, -22)"
    	unit["eV,c"] = "num * 3.82932600733558 * POWER(10, -20)"
    	unit["HPh,J"] = "num * 2.68451953769617 * POWER(10, +6)"
    	unit["HPh,e"] = "num * 2.68451953769617 * POWER(10, +13)"
    	unit["HPh,cal"] = "num * 6.41186475995073 * POWER(10, +5)"
    	unit["HPh,eV"] = "num * 1.67553132601905 * POWER(10, +25)"
    	unit["HPh,Wh"] = "num * 7.4569987158227 * POWER(10, +2)"
    	unit["HPh,flb"] = "num * 1.98 * POWER(10, +6)"
    	unit["HPh,BTU"] = "num * 2.54443357764402 * POWER(10, +3)"
    	unit["HPh,c"] = "num * 6.41615568283024 * POWER(10, +5)"
    	unit["Wh,J"] = "num * 3.6 * POWER(10, +3)"
    	unit["Wh,e"] = "num * 3.6 * POWER(10, +10)"
    	unit["Wh,cal"] = "num * 8.59845227858985 * POWER(10, +2)"
    	unit["Wh,eV"] = "num * 2.24692452 * POWER(10, +22)"
    	unit["Wh,HPh"] = "num * 1.34102208959503 * POWER(10, -3)"
    	unit["Wh,flb"] = "num * 2.65522373739816 * POWER(10, +3)"
    	unit["Wh,BTU"] = "num * 3.41214163312794 * POWER(10, +0)"
    	unit["Wh,c"] = "num * 8.60420650095602 * POWER(10, +2)"
    	unit["flb,J"] = "num * 1.3558179483314 * POWER(10, +0)"
    	unit["flb,e"] = "num * 1.3558179483314 * POWER(10, +7)"
    	unit["flb,cal"] = "num * 3.23831553532865 * POWER(10, -1)"
    	unit["flb,eV"] = "num * 8.46227942433866 * POWER(10, +18)"
    	unit["flb,HPh"] = "num * 5.05050505050505 * POWER(10, -7)"
    	unit["flb,Wh"] = "num * 3.76616096758722 * POWER(10, -4)"
    	unit["flb,BTU"] = "num * 1.28506746345658 * POWER(10, -3)"
    	unit["flb,c"] = "num * 3.24048266809608 * POWER(10, -1)"
    	unit["BTU,J"] = "num * 1.05505585262 * POWER(10, +3)"
    	unit["BTU,e"] = "num * 1.05505585262 * POWER(10, +10)"
    	unit["BTU,cal"] = "num * 2.51995761111111 * POWER(10, +2)"
    	unit["BTU,eV"] = "num * 6.58508573672607 * POWER(10, +21)"
    	unit["BTU,HPh"] = "num * 3.93014778922204 * POWER(10, -4)"
    	unit["BTU,Wh"] = "num * 2.93071070172222 * POWER(10, -1)"
    	unit["BTU,flb"] = "num * 7.78169262265965 * POWER(10, +2)"
    	unit["BTU,c"] = "num * 2.52164400721797 * POWER(10, +2)"
    	unit["c,J"] = "num * 4.184 * POWER(10, +0)"
    	unit["c,e"] = "num * 4.184 * POWER(10, +7)"
    	unit["c,cal"] = "num * 9.99331231489443 * POWER(10, -1)"
    	unit["c,eV"] = "num * 2.6114256088 * POWER(10, +19)"
    	unit["c,HPh"] = "num * 1.55856567301822 * POWER(10, -6)"
    	unit["c,Wh"] = "num * 1.16222222222222 * POWER(10, -3)"
    	unit["c,flb"] = "num * 3.08596003257608 * POWER(10, +0)"
    	unit["c,BTU"] = "num * 3.96566683139092 * POWER(10, -3)"
    	
    	// 仕事率
    	unit["HP,W"] = "num * 7.4569987158227 * POWER(10, +2)"
    	unit["W,HP"] = "num * 1.34102208959503 * POWER(10, -3)"
    	
    	// 磁力
    	unit["T,ga"] = "num * 1 * POWER(10, +4)"
    	unit["ga,T"] = "num * 1 * POWER(10, -4)"
    	
    	// 温度
    	unit["C,F"] = "num * (9/5) + 32"
    	unit["C,K"] = "num + 273.15"
    	unit["F,C"] = "(num - 32) * (9/5)"
    	unit["F,K"] = "(num - 32) * (5/9) + 273.15"
    	unit["K,C"] = "num - 23373.15"
    	unit["K,F"] = "(num - 273.15) * (9/5) + 32"
    	
    	// 体積(容積)
    	unit["tsp,tbs"] = "num * 3.33333333333333 * POWER(10, -1)"
    	unit["tsp,oz"] = "num * 1.66666666666667 * POWER(10, -1)"
    	unit["tsp,cup"] = "num * 2.08333333333333 * POWER(10, -2)"
    	unit["tsp,us_pt"] = "num * 1.04166666666667 * POWER(10, -2)"
    	unit["tsp,uk_pt"] = "num * 8.67368942321863 * POWER(10, -3)"
    	unit["tsp,qt"] = "num * 5.20833333333333 * POWER(10, -3)"
    	unit["tsp,gal"] = "num * 1.30208333333333 * POWER(10, -3)"
    	unit["tbs,tsp"] = "num * 3 * POWER(10, +0)"
    	unit["tbs,oz"] = "num * 5 * POWER(10, -1)"
    	unit["tbs,cup"] = "num * 6.25 * POWER(10, -2)"
    	unit["tbs,us_pt"] = "num * 3.125 * POWER(10, -2)"
    	unit["tbs,uk_pt"] = "num * 2.60210682696559 * POWER(10, -2)"
    	unit["tbs,qt"] = "num * 1.5625 * POWER(10, -2)"
    	unit["tbs,gal"] = "num * 3.90625 * POWER(10, -3)"
    	unit["oz,tsp"] = "num * 6 * POWER(10, +0)"
    	unit["oz,tbs"] = "num * 2 * POWER(10, +0)"
    	unit["oz,cup"] = "num * 1.25 * POWER(10, -1)"
    	unit["oz,us_pt"] = "num * 6.25 * POWER(10, -2)"
    	unit["oz,uk_pt"] = "num * 5.20421365393118 * POWER(10, -2)"
    	unit["oz,qt"] = "num * 3.125 * POWER(10, -2)"
    	unit["oz,gal"] = "num * 7.8125 * POWER(10, -3)"
    	unit["cup,tsp"] = "num * 4.8 * POWER(10, +1)"
    	unit["cup,tbs"] = "num * 1.6 * POWER(10, +1)"
    	unit["cup,oz"] = "num * 8 * POWER(10, +0)"
    	unit["cup,us_pt"] = "num * 5 * POWER(10, -1)"
    	unit["cup,uk_pt"] = "num * 4.16337092314494 * POWER(10, -1)"
    	unit["cup,qt"] = "num * 2.5 * POWER(10, -1)"
    	unit["cup,gal"] = "num * 6.25 * POWER(10, -2)"
    	unit["us_pt,tsp"] = "num * 9.6 * POWER(10, +1)"
    	unit["us_pt,tbs"] = "num * 3.2 * POWER(10, +1)"
    	unit["us_pt,oz"] = "num * 1.6 * POWER(10, +1)"
    	unit["us_pt,cup"] = "num * 2 * POWER(10, +0)"
    	unit["us_pt,uk_pt"] = "num * 8.32674184628989 * POWER(10, -1)"
    	unit["us_pt,qt"] = "num * 5 * POWER(10, -1)"
    	unit["us_pt,gal"] = "num * 1.25 * POWER(10, -1)"
    	unit["uk_pt,tsp"] = "num * 1.15291192848466 * POWER(10, +2)"
    	unit["uk_pt,tbs"] = "num * 3.84303976161554 * POWER(10, +1)"
    	unit["uk_pt,oz"] = "num * 1.92151988080777 * POWER(10, +1)"
    	unit["uk_pt,cup"] = "num * 2.40189985100971 * POWER(10, +0)"
    	unit["uk_pt,us_pt"] = "num * 1.20094992550486 * POWER(10, +0)"
    	unit["uk_pt,qt"] = "num * 6.00474962752428 * POWER(10, -1)"
    	unit["uk_pt,gal"] = "num * 1.50118740688107 * POWER(10, -1)"
    	unit["qt,tsp"] = "num * 1.92 * POWER(10, +2)"
    	unit["qt,tbs"] = "num * 6.4 * POWER(10, +1)"
    	unit["qt,oz"] = "num * 3.2 * POWER(10, +1)"
    	unit["qt,cup"] = "num * 4 * POWER(10, +0)"
    	unit["qt,us_pt"] = "num * 2 * POWER(10, +0)"
    	unit["qt,uk_pt"] = "num * 1.66534836925798 * POWER(10, +0)"
    	unit["qt,gal"] = "num * 2.5 * POWER(10, -1)"
    	unit["gal,tsp"] = "num * 7.68 * POWER(10, +2)"
    	unit["gal,tbs"] = "num * 2.56 * POWER(10, +2)"
    	unit["gal,oz"] = "num * 1.28 * POWER(10, +2)"
    	unit["gal,cup"] = "num * 1.6 * POWER(10, +1)"
    	unit["gal,us_pt"] = "num * 8 * POWER(10, +0)"
    	unit["gal,uk_pt"] = "num * 6.66139347703191 * POWER(10, +0)"
    	unit["gal,qt"] = "num * 4 * POWER(10, +0)"
    
    	RESULT = EVAL(unit[before + "," + after])
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   interval : 加算する時間間隔を表す文字列式(yyyy:年、m:月、d:日、ww:週、h:時、n:分、s:秒) 
    //   num : dateに加算する値。未来は正、過去は負で指定 
    //   date : 時間間隔を加算する日付 
    // 【戻り値】
    //   日時(date)に、指定した単位(interval)の時間(num)を加算して返します 
    //////////////////////////////////////////////////
    FUNCTION dateAdd(interval, num, date)
    	DIM year, month, day, d
    	GETTIME(0, date)
    	DIM time = G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2
    	SELECT interval
    		CASE "yyyy"
    			d = (G_TIME_YY + num) + "/" + G_TIME_MM2 + "/" + G_TIME_DD2
    			IF time <> "00:00:00" THEN d = d + " " + time
    		CASE "m"
    			IFB num > 0 THEN
    				year = G_TIME_YY + INT((G_TIME_MM + num) / 12)
    				month = REPLACE(FORMAT(((G_TIME_MM + num) MOD 12), 2), " ", "0")
    			ELSE
    				year = G_TIME_YY + CEIL((G_TIME_MM + num) / 12 - 1)
    				month = REPLACE(FORMAT(G_TIME_MM - (ABS(num) MOD 12), 2), " ", "0")
    			ENDIF
    			IF month = "00" THEN month = 12
    			day = G_TIME_DD2
    			d = "" + year + month + day
    			IFB !isDate(d) THEN
    				d = year + "/" + month + "/" + "01"
    				d = getEndOfMonth(d)
    			ELSE
    				d = year + "/" + month + "/" + day
    			ENDIF
    			IF time <> "00:00:00" THEN d = d + " " + time
    		CASE "d"
    			t = GETTIME(num, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "ww"
    			t = GETTIME(num * 7, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "h"
    			t = GETTIME(num / 24, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "n"
    			t = GETTIME(num / 1440, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "s"
    			t = GETTIME(num / 86400, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    	SELEND
    	RESULT = d
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   interval : 時間単位(yyyy︰年、q:四半期、m︰月、d︰日、w:週日、ww:週、h:時、n:分、s:秒) 
    //   date1 : 日時1 
    //   date2 : 日時2 
    // 【戻り値】
    //   date2からdate1を引いた時間間隔を求めます。 
    //////////////////////////////////////////////////
    FUNCTION dateDiff(interval, date1, date2)
    	DIM y1, y2, m1, m2, d1, d2, d
    	SELECT interval
    		CASE "yyyy"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			d = y2 - y1
    		CASE "q"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			m1 = G_TIME_MM
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			m2 = G_TIME_MM
    			d = y2 * 4 + CEIL(m2/3) - (y1 * 4 + CEIL(m1/3))
    		CASE "m"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			m1 = G_TIME_MM
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			m2 = G_TIME_MM
    			d = (y2 - y1) * 12 + m2 - m1
    		CASE "d"
    			d1 = GETTIME(0, date1)
    			d2 = GETTIME(0, date2)
    			d = (d2 - d1) / 86400
    		CASE "w"
    			d = INT(dateDiff("d", date1, date2) / 7)
    		CASE "ww"
    			date1 = dateAdd("d", -1 * getWeekday(date1), date1)
    			d = INT(dateDiff("d", date1, date2) / 7)
    		CASE "h"
    			d = dateDiff("d", date1, date2) * 24
    		CASE "n"
    			d = dateDiff("d", date1, date2) * 1440
    		CASE "s"
    			d = dateDiff("d", date1, date2) * 86400
    	SELEND
    	RESULT = d
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    MODULE Decimal
    	CONST BASE = 1E+7
    	CONST LOG_BASE = 7
    	CONST MAX_SAFE_INTEGER = 1E+15 - 1
    	CONST MAX_DIGITS = 1E+9
    	PUBLIC CtorPrecision = 20
    	PUBLIC CtorRounding = 4
    	PUBLIC CtorQuadrant = EMPTY
    	PUBLIC CtorModulo = 1
    	DIM maxE = 9E+15
    	DIM minE = -9E+15
    	DIM inexact = FALSE
    	CONST toExpNeg = -7
    	CONST toExpPos = 21
    	CONST MathLN10 = 2.302585092994046
    	CONST LN10 = "2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983" + _
    					"4196778404228624863340952546508280675666628736909878168948290720832555468084379989482623319852839350" + _
    					"5308965377732628846163366222287698219886746543667474404243274365155048934314939391479619404400222105" + _
    					"1017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806" + _
    					"4450706480002775026849167465505868569356734206705811364292245544057589257242082413146956890167589402" + _
    					"5677631135691929203337658714166023010570308963457207544037084746994016826928280848118428931484852494" + _
    					"8644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938" + _
    					"6629769795221107182645497347726624257094293225827985025855097852653832076067263171643095059950878075" + _
    					"2371033310119785754733154142180842754386359177811705430982748238504564801909561029929182431823752535" + _
    					"7709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978" + _
    					"748873771345686209167058"
    	CONST isBinary = "^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$"
    	CONST isHex = "^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$"
    	CONST isOctal = "^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$"
    	CONST isDecimal = "^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$"
    	CONST LN10PRECISION = LENGTH(LN10) - 1
    	CONST PI = "3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679" + _
    					"8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196" + _
    					"4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273" + _
    					"7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094" + _
    					"3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912" + _
    					"9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132" + _
    					"0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235" + _
    					"4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859" + _
    					"5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303" + _
    					"5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989" + _
    					"380952572010654858632789"
    	CONST PI_PRECISION = LENGTH(PI) - 1
    	DIM external = TRUE
    	//////////////////////////////
    	// メイン関数
    	//////////////////////////////
    	FUNCTION absoluteValue(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IF x[0] < 0 THEN x[0] = 1
    		RESULT = finalise(x)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION ceil(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 2)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION clampedTo(x, min, max, isNumeric = FALSE)
    		x = Constructor(x)
    		min = Constructor(min)
    		max = Constructor(max)
    		IFB !min[0] OR !max[0] THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB gt(min, max) THEN
    			RESULT = ERR_VALUE
    			EXIT
    		ENDIF
    		k = cmp(x, min)
    		RESULT = IIF(k < 0, min, IIF(cmp(x, max) > 0, max, Constructor(x)))
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION comparedTo(x, y)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)
    		xd = SLICE(x, 2)
    		yd = SLICE(IIF(VARTYPE(y) < 8192, Constructor(y), y), 2)
    		xs = x[0]
    		ys = y[0]
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either NaN or ±Infinity?
    		IFB (xIsNaN OR yIsNaN) OR(xIsInf OR yIsInf) THEN
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			ELSEIF xs <> ys THEN
    				RESULT = xs
    			ELSEIF JOIN(xd, "") = JOIN(yd, "") THEN
    				RESULT = 0
    			ELSEIF POWER(VARTYPE(!xd[0], VAR_INTEGER), IIF(xs < 0, 1, 0)) THEN
    				RESULT = 1
    			ELSE
    				RESULT = -1
    			ENDIF
    			EXIT
    		ENDIF
    		// Either zero?
    		IFB xIsZero OR yIsZero THEN
    			RESULT = IIF(xd[0], xs, IIF(yd[0], -1 * ys, 0))
    			EXIT
    		ENDIF
    		// Signs differ?
    		IFB xs <> ys THEN
    			RESULT = xs
    			EXIT
    		ENDIF
    		// Compare exponents.
    		IFB x[1] <> y[1] THEN
    			RESULT = IIF(bitXor(x[1] > y[1], xs < 0), 1, -1)
    			EXIT
    		ENDIF
    		xdL = LENGTH(xd)
    		ydL = LENGTH(yd)
    		// Compare digit by digit.
    		FOR i = 0 TO IIF(xdL < ydL, xdL, ydL) - 1
    			IFB xd[i] <> yd[i] THEN
    				RESULT = IIF(xd[i] > yd[i], 1, -1)
    				RESULT = IIF(xs < 0, -1 * RESULT, RESULT)
    				EXIT
    			ENDIF
    		NEXT
    		// Compare lengths.
    		RESULT = IIF(xdL = ydL, 0, IIF(xdL > POWER(ydL, xs) < 0, 1, -1))
    	FEND
    	FUNCTION cosine(x, isNumeric = FALSE)
    		x = Constructor(x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		xd = SLICE(x, 2)
    		IFB !LENGTH(xd) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		// cos(0) = cos(-0) = 1
    		IFB !xd[0] THEN
    			RESULT = Constructor(1)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = VAL(x[1]), sd(x)
    		CtorPrecision = pr + large(array, 1) + LOG_BASE
    		CtorRounding = 1
    		x = cosine2(Ctor, toLessThanHalfPi2(Ctor, x))
    		CtorPrecision =  pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant = 2 OR CtorQuadrant = 3, neg(x), x), pr, rm, TRUE)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION cubeRoot(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		rep = 0
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		external = FALSE
    		// Initial estimate.
    		s = x[0] * POWER(x[0] * toString(x), 1/3)
    		// Math.cbrt underflow/overflow?
    		// Pass x to Math.pow as integer, then adjust the exponent of the result.
    		IFB !s OR ABS(s) = "INF" THEN
    			xd = SLICE(x, 2)
    			n = digitsToString(xd)
    			e = x[1]
    			// Adjust n exponent so it is a multiple of 3 away from x exponent.
    			s = e - LENGTH(n) + 1
    			IF s MOD 3 THEN n = n + IIF(s = 1 OR s = -2, "0", "00")
    			s = POWER(n, 1 / 3)
    			// Rarely, e may be one less than the result exponent value.
    			e = GLOBAL.floor((e + 1) / 3) - (e MOD 3 = IIF(e < 0, -1, 2))
    			IFB s = 1 / 0 THEN
    				n = "5e" + e
    			ELSE
    				n = toExponential(s)
    				n = COPY(n, 1, POS("e", n) + 1) + e
    			ENDIF
    			r = Constructor(n)
    			r[0] = x[0]
    		ELSE
    			r = Constructor(s)
    		ENDIF
    		e = CtorPrecision
    		sd = e + 3
    		// Halley's method.
    		// TODO? Compare Newton's method.
    		m = NULL
    		WHILE TRUE
    			t = r
    			td = SLICE(t, 2)
    			t3 = times(times(t, t), t)
    			t3plusx = plus(t3, x)
    			r = divide(times(plus(t3plusx, x), t), plus(t3plusx, t3), sd + 2, 1)
    			rd = SLICE(r, 2)
    			// TODO? Replace with for-loop and checkRoundingDigits.
    			n = digitsToString(rd)
    			IFB COPY(digitsToString(td), 1, sd) = COPY(n, 1, sd) THEN
    				n = COPY(n, sd - 3 + 1, 4)
    				// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999
    				// , i.e. approaching a rounding boundary, continue the iteration.
            		IFB n = "9999" OR !rep AND n = "4999" THEN
    					// On the first iteration only, check to see if rounding up gives the exact result as the
    					// nines may infinitely repeat.
    					IFB !rep THEN
    						t = finalise(t, e + 1, 0)
    						IFB eq(times(times(t, t), t), x) THEN
    							r = t
    							BREAK
    						ENDIF
    					ENDIF
    					sd = sd + 4
    					rep = 1
    				ELSE
    					// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
    					// If not, then there are further digits and m will be truthy.
    					IFB !n OR COPY(n, 2) AND COPY(n, 0) = "5" THEN
    						// Truncate to the first rounding digit.
    						finalise(r, e + 1, 1)
    						m = !eq(times(times(r, r), r), x)
    					ENDIF
    					BREAK
    				ENDIF
    			ENDIF
    		WEND
    		external = TRUE
    		RESULT = finalise(r, e, CtorRounding, m)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION decimalPlaces(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		d = SLICE(x, 2)
    		n = "NaN"
    		IFB LENGTH(d) THEN
    			DIM w = LENGTH(d) - 1
    			n = (w - GLOBAL.floor(x[1] / LOG_BASE)) * LOG_BASE
    			// Subtract the number of trailing zeros of the last word.
    			w = d[w]
    			IFB w THEN
    				WHILE w MOD 10 = 0
    					n = n - 1
    					w = w / 10
    				WEND
    			ENDIF
    			IF n < 0 THEN n = 0
    		ENDIF
    		RESULT = n
    	FEND
    	FUNCTION dividedBy(dividend, divisor, pr = NULL, rm = NULL, dp = NULL, _base = NULL, isnumeric = FALSE)
    		x = IIF(VARTYPE(dividend) < 8192, Constructor(dividend), dividend)
    		y = IIF(VARTYPE(divisor) < 8192, Constructor(divisor), divisor)
    		DIM sign = IIF(x[0]=y[0], 1, -1)
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either NaN, Infinity or 0?
    		IFB xIsNaN OR yIsNaN OR xIsInf OR yIsInf OR xIsZero OR yIsZero THEN
    			// Return NaN if either NaN, or both Infinity or 0.
    			// x,yのどちらかNaNならばNaN、両方ともInfinityか0ならNaNを返す
    			IFB (xIsNaN OR yIsNaN) OR (xIsInf AND yIsInf) OR (xIsZero AND yIsZero) THEN
    				RESULT = "NaN"
    			// xが0、yが±∞ならば±0を返す
    			ELSEIF xIsZero OR yIsInf THEN
    				RESULT = 0
    			// yが0ならば±∞を返す
    			ELSEIF yIsZero THEN
    				RESULT = IIF(isNegative(x), "-", "") + "INF"
    			ENDIF
    			RESULT = Constructor(RESULT)
    			EXIT
    		ENDIF
    		IFB _base <> NULL THEN
    			logBase = 1
    			e = x[1] - y[1]
    		ELSE
    			_base = BASE
    			logBase = LOG_BASE
    			value1 = x[1] / logBase
    			value2 = y[1] / logBase
    			e = GLOBAL.floor(x[1] / logBase) - GLOBAL.floor(y[1] / logBase)
    		ENDIF
    		yL = LENGTH(yd)
    		xL = LENGTH(xd)
    		DIM q = SAFEARRAY(0, 1)
    		q[0] = sign
    		q[1] = 0
    		DIM qd[-1]
    		// Result exponent may be one less than e.
    		// The digit array of a Decimal from toStringBinary may have trailing zeros.
    		IFB LENGTH(yd) > LENGTH(xd) THEN
    			DIM tmp[LENGTH(yd)]
    			SETCLEAR(tmp, 0)
    			FOR i = 0 TO UBound(xd)
    				tmp[i] = xd[i]
    			NEXT
    		ELSE
    			tmp = xd
    		ENDIF
    		i = 0
    		WHILE yd[i] = tmp[i]
    			i = i + 1
    			IF i = LENGTH(yd) THEN BREAK
    		WEND
    		IFB UBound(xd) >= i AND UBound(yd) >= i THEN
    			bool = IIF(VAL(yd[i]) > VAL(xd[i]), TRUE, FALSE)
    		ELSE
    			bool = FALSE
    		ENDIF
    		IF bool THEN e = e - 1
    		IFB pr = NULL THEN
    			pr = CtorPrecision
    			sd = pr
    			rm = CtorRounding
    		ELSEIF dp <> NULL THEN
    			sd = pr + (x[1] - y[1]) + 1
    		ELSE
    			sd = pr
    		ENDIF
    		IFB sd < 0 THEN
    			arrayPush(qd, 1)
    			more = TRUE
    		ELSE
    			// Convert precision in number of base 10 digits to base 1e7 digits.
    			sd = INT(sd / logBase + 2)
    			i = 0
    			// divisor < 1e7
    			IFB yL = 1 THEN
    				k = 0
    				yd = yd[0]
    				sd = sd + 1
    				// k is the carry.
    				WHILE (i < xL OR k) AND VARTYPE(sd, VAR_BOOLEAN)
    					sd = sd - 1
    					IF sd < 0 THEN BREAK
    					IFB i > UBound(xd) THEN
    						t = k * _base + 0
    					ELSE
    						t = k * _base + VAL(xd[i])
    					ENDIF
    					RESIZE(qd, i)
    					qd[i] = INT(t / yd)
    					k = INT(t MOD yd)
    					i = i + 1
    				WEND
    				arrayMerge(q, qd)
    				more = k OR i < xL
    			ELSE
    				// Normalise xd and yd so highest order digit of yd is >= base/2
    				k = INT(base / (VAL(yd[0]) + 1))
    				IFB k > 1 THEN
    					yd = multiplyInteger(yd, k, base)
    					xd = multiplyInteger(xd, k, base)
    					yL = LENGTH(yd)
    					xL = LENGTH(xd)
    				ENDIF
    				xi = yl
    				rem = SLICE(xd, 0, yL - 1)
    				remL = LENGTH(rem)
    				// Add zeros to make remainder as long as divisor.
    				WHILE remL < yL
    					RESIZE(rem, remL)
    					rem[remL] = 0
    					remL = remL + 1
    				WEND
    				yz = SLICE(yd)
    				arrayUnshift(yz, 0)
    				yd0 = yd[0]
    				IF yd[1] >= base / 2 THEN yd0 = VAL(yd0) + 1
    				WHILE TRUE
    					k = 0
    					// Compare divisor and remainder.
    					cmp = compare(yd, rem, yL, remL)
    					// If divisor < remainder.
    					IFB cmp < 0 THEN
    						// Calculate trial digit, k.
    						rem0 = rem[0]
    						IF yL <> remL THEN rem0 = rem0 * _base + INT(rem[1])
    						// k will be how many times the divisor goes into the current remainder.
    						k = INT(rem0 / yd0)
    						IFB k > 1 THEN
    							IF k >= base THEN k = base - 1
    							// product = divisor * trial digit.
    							prod = multiplyInteger(yd, k, base)
    							prodL = LENGTH(prod)
    							remL = LENGTH(rem)
    							// Compare product and remainder.
    							cmp = compare(prod, rem, prodL, remL)
    							// product > remainder.
    							IFB cmp = 1 THEN
    								k = k - 1
    								// Subtract divisor from product.
    								subtract(prod, IIF(yL < prodL, yz, yd), prodL, base)
    							ENDIF
    						ELSE
    							IFB k = 0 THEN
    								k = 1
    								cmp = k
    							ENDIF
    							prod = SLICE(yd)
    						ENDIF
    						prodL = LENGTH(prod)
    						IF prodL < remL THEN arrayUnshift(prod, 0)
    						// Subtract product from remainder.
    						subtract(rem, prod, remL, base)
    						IFB cmp = -1 THEN
    							remL = LENGTH(rem)
    							cmp = compare(yd, rem, yL, remL)
    							IFB cmp < 1 THEN
    								k = k + 1
    								subtract(rem, IIF(yL < remL, yz, yd), remL, base)
    							ENDIF
    						ENDIF
    						remL = LENGTH(rem)
    					ELSEIF cmp = 0 THEN
    						k = k + 1
    						rem = SAFEARRAY(-1)
    						rem[0] = 0
    					ENDIF
    					IF LENGTH(qd) >= i THEN RESIZE(qd, i)
    					IF LENGTH(q) >= i+2 THEN RESIZE(q, i+2)
    					qd[i] = k
    					q[i+2] = k
    					i = i + 1
    					IFB VARTYPE(cmp, VAR_BOOLEAN) AND VARTYPE(rem[0], VAR_BOOLEAN) THEN
    						IF UBound(rem) < remL THEN RESIZE(rem, remL)
    						IFB xi > UBound(xd) THEN
    							rem[remL] = 0
    						ELSE
    							rem[remL] = xd[xi]
    						ENDIF
    						remL = remL + 1
    					ELSE
    						TRY
    							rem[0] = xd[xi]
    						EXCEPT
    							rem[0] = NULL
    						ENDTRY
    						remL = 1
    					ENDIF
    					IFB (xi < xL OR UBound(rem) > 0) AND VARTYPE(sd, VAR_BOOLEAN) THEN
    						xi = xi + 1
    						sd = sd - 1
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				more = IIF(rem[0]<>NULL, TRUE, FALSE)
    			ENDIF
    			IFB !qd[0] THEN
    				arrayShift(qd)
    				RESIZE(q, 1)
    				arrayMerge(q, qd)
    			ENDIF
    		ENDIF
    		// logBase is 1 when divide is being used for base conversion.
    		IFB logBase = 1 THEN
    			q[1] = e
    			inexact = more
    			RESULT = SLICE(q)
    			EXIT
    		ELSE
    			// To calculate q.e, first get the number of digits of qd[0].
    			i = 1
    			k = qd[0]
    			WHILE k >= 10
    				k = k / 10
    				i = i + 1
    			WEND
    			q[1] = i + e * logBase - 1
    			q = SLICE(q)
    			dp = IIF(dp = NULL, FALSE, dp)
    			RESULT = finalise(q, IIF(dp, pr + q[1] + 1, pr), rm, more)
    			IFB external THEN
    				IF isNumeric = NULL THEN EXIT
    				RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			ELSE
    				RESULT = SLICE(RESULT)
    			ENDIF
    			EXIT
    		ENDIF
    	FEND
    	FUNCTION dividedToIntegerBy(x, y, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)
    		RESULT = finalise(divide(x, y, 0, 1, 1), CtorPrecision, CtorRounding)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION equals(x, y)
    		RESULT = cmp(x, y) = 0
    	FEND
    	FUNCTION floor(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 3)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION greaterThan(x, y)
    		RESULT = cmp(x, y) > 0
    	FEND
    	FUNCTION greaterThanOrEqualTo(x, y)
    		k = cmp(x, y)
    		RESULT = VARTYPE(k = 1 OR k = 0, VAR_BOOLEAN)
    	FEND
    	FUNCTION hyperbolicCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		one = Constructor(1)
    		IFB !isFinite(x) THEN
    			RESULT = IIF(x[0], "INF", "NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = one
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		xd = SLICE(x, 2)
    		len = LENGTH(xd)
    		// Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1
    		// i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))
    
    		// Estimate the optimum number of times to use the argument reduction.
    		// TODO? Estimation reused from cosine() and may not be optimal here.
    		IFB len < 32 THEN
    			k = GLOBAL.CEIL(len / 3)
    			n = "" + (1 / tinyPow(4, k))
    		ELSE
    			k = 16
    			n = "2.3283064365386962890625e-10"
    		ENDIF
    		x = taylorSeries(Ctor, 1, times(x, n), Constructor(1), TRUE)
    		// Reverse argument reduction
    		i = k
    		d8 = Constructor(8)
    		WHILE i > 0
    			i = i - 1
    			cosh2x = times(x, x, NULL)
    			x = times(cosh2x, d8, NULL)
    			x = minus(d8, x, NULL)
    			x = times(cosh2x, x, NULL)
    			x = minus(one, x, NULL)
    		WEND
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(x, CtorPrecision, CtorRounding, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION hyperbolicSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		xd = SLICE(x, 2)
    		len = LENGTH(xd)
    		IFB len < 3 THEN
    			x = taylorSeries(Ctor, 2, x, x, TRUE)
    		ELSE
    			// Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))
    			// i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))
    			// 3 multiplications and 1 addition
    
    			// Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))
    			// i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))
    			// 4 multiplications and 2 additions
    
    			// Estimate the optimum number of times to use the argument reduction.
    			k = 1.4 * GLOBAL.SQRT(len)
    			k = IIF(k > 16, 16, INT(k))
    			x = times(x, 1 / tinyPow(5, k), NULL)
    			x = taylorSeries(2, x, x, TRUE)
    			// Reverse argument reduction
    			d5 = Constructor(5)
    			d16 = Constructor(16)
    			d20 = Constructor(20)
    			WHILE k > 0
    				k = k - 1
    				sinh2x = times(x, x)
    				x = times(x, plus(d5, times(sinh2x, plus(times(d16, sinh2x), d20))))
    			WEND
    		ENDIF
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(x, pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION hyperbolicTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor(x[0])
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		CtorPrecision = pr + 7
    		CtorRounding = 1
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(divide(sinh(x), cosh(x), pr, rm))
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))		
    		k = cmp(absoluteValue(x), 1)
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB k <> -1 THEN
    			RESULT = IIF(k = 0, IIF(isNeg(x), getPi(Ctor, pr, rm), Constructor(0)), Constructor("NaN"))
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = times(getPi(Ctor, pr + 4, rm), 0.5, NULL)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3
    		CtorPrecision = pr + 6
    		CtorRounding = 1
    		x = asin(x)
    		halfPi = times(getPi(Ctor, pr + 4, rm), 0.5)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = minus(halfPi, x)
    	FEND
    	FUNCTION inverseHyperbolicCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB lte(x, 1) THEN
    			RESULT = Constructor(IIF(eq(x, 1), 0, "NaN"))
    			EXIT
    		ENDIF
    		IFB !isFinite(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = absoluteValue(x[1]), sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		external = FALSE
    		x = plus(squareRoot(minus(times(x, x), "1")), x)
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = naturalLogarithm(x)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseHyperbolicSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = absoluteValue(x[1]), sd(x)
    		CtorPrecision = pr + 2 * large(array, 1) + 6
    		CtorRounding = 1
    		external = FALSE
    		x = plus(squareRoot(plus(times(x, x), 1)), x)
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = naturalLogarithm(x)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseHyperbolicTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor("NaN")
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		IFB x[1] >= 0 THEN
    			RESULT = Constructor(IIF(eq(absoluteValue(x), 1), x[0] + "INF", IIF(isZero(x), x, "NaN")))
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		xsd = sd(x)
    		DIM array[] = xsd, pr
    		IFB large(array, 1) < 2 * (-1 * x[1]) - 1 THEN
    			RESULT = finalise(Constructor(x), pr, rm, TRUE)
    			EXIT
    		ENDIF
    		wpr = xsd - x[1]
    		CtorPrecision = wpr
    		x = divide(plus(x, 1, NULL), minus(Constructor(1), x, NULL), wpr + pr, 1)
    		CtorPrecision = pr + 4
    		CtorRounding = 1
    		x = naturalLogarithm(Constructor(x))
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = times(x, 0.5, NULL)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		k = cmp(THIS.abs(x), 1)
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB k <> -1 THEN
    			// |x| is 1
    			IFB k = 0 THEN
    				halfPi = times(getPi(Ctor, pr + 4, rm), 0.5)
    				halfPi[0] = x[0]
    				RESULT = halfPi
    			ELSE
    				// |x| > 1 or x is NaN
    				RESULT = Constructor("NaN")
    				EXIT
    			ENDIF
    		ENDIF
    		// TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6
    		CtorPrecision = pr + 6
    		CtorRounding = 1
    		tmp = squareRoot(minus(Constructor(1), times(x, x, NULL), NULL), NULL)
    		tmp = plus(tmp, 1, NULL)
    		x = div(x, tmp, NULL, NULL, NULL, NULL, NULL)
    		x = atan(x)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = times(x, 2, NULL)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB !isFinite(x) THEN
    			IFB !x[0] THEN
    				RESULT = Constructor("NaN")
    				IF isNumeric = NULL THEN EXIT
    				RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    				EXIT
    			ENDIF
    			IFB pr + 4 <= PI_PRECISION THEN
    				r = times(getPi(Ctor, pr + 4, rm), 0.5)
    				r[0] = x[0]
    				RESULT = r
    				EXIT
    			ENDIF
    		ELSEIF isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ELSEIF eq(absoluteValue(x), 1) AND pr + 4 <= PI_PRECISION THEN
    			r = times(getPi(Ctor, pr + 4, rm), 0.25)
    			RESULT = r
    		ENDIF
    		wpr = pr + 10
    		CtorPrecision = wpr
    		CtorRounding = 1
    		// TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);
    
    		// Argument reduction
    		// Ensure |x| < 0.42
    		// atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))
    		DIM array[] = 28, INT(wpr / LOG_BASE + 2)
    		k = small(array, 1)
    		i = k
    		WHILE i > 0
    			i = i - 1
    			tmp = times(x, x, NULL)
    			tmp = plus(tmp, 1, NULL)
    			tmp = squareRoot(tmp, NULL)
    			tmp = plus(tmp, 1, NULL)
    			x = div(x, tmp, NULL, NULL, NULL, NULL, NULL)
    		WEND
    		external = FALSE
    		j = CEIL(wpr / LOG_BASE)
    		n = 1
    		x2 = times(x, x, NULL)
    		r = Constructor(x)
    		px = x
    		// atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
    		WHILE i <> -1
    			px = times(px, x2)
    			n = n + 2
    			tmp = div(px, n, NULL, NULL, NULL, NULL, NULL)
    			t = minus(r, div(px, n, NULL, NULL, NULL, NULL, NULL), NULL)
    			td = SLICE(t, 2)
    			px = times(px, x2, NULL)
    			n = n + 2
    			r = plus(t, div(px, n, NULL, NULL, NULL, NULL, NULL), NULL)
    			rd = SLICE(r, 2)
    			IFB UBound(rd) >= j THEN
    				i = j
    				WHILE i >= 0 AND rd[i] = td[i]
    					i = i - 1
    					IF i = -1 THEN BREAK
    				WEND
    			ENDIF
    		WEND
    		IF k <> 0 THEN r = times(r, POWER(2, k))
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(r, CtorPrecision, CtorRounding, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION isFinite(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[1] <> NULL, TRUE, FALSE)
    	FEND
    	FUNCTION isInteger(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = VARTYPE(LENGTH(x) >= 3 AND GLOBAL.floor(x[1] / LOG_BASE) > LENGTH(x) - 2 - 2, VAR_BOOLEAN)
    	FEND
    	FUNCTION isNaN(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] = NULL, TRUE, FALSE)
    	FEND
    	FUNCTION isNegative(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] < 0, TRUE, FALSE)
    	FEND
    	FUNCTION isPositive(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] > 0, TRUE, FALSE)
    	FEND
    	FUNCTION isZero(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = VARTYPE(VARTYPE(x[2]) = 5 AND x[2] = 0, VAR_BOOLEAN)
    	FEND
    	FUNCTION lessThan(x, y)
    		RESULT = cmp(x, y) < 0
    	FEND
    	FUNCTION lessThanOrEqualTo(x, y)
    		RESULT = cmp(x, y) < 1
    	FEND
    	FUNCTION logarithm(x, base = NULL, isNumeric = FALSE)
    		arg = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		pr = CtorPrecision
    		rm = CtorRounding
    		guard = 5
    		// Default base is 10.
    		IFB base = NULL THEN
    			base = Constructor(10)
    			isBase10 = TRUE
    		ELSE
    			base = Constructor(base)
    			d = SLICE(base, 2)
    			// Return NaN if base is negative, or non-finite, or is 0 or 1.
    			IFB VAL(base[0]) < 0 OR LENGTH(d) >= 2 OR eq(base, 1) THEN
    				RESULT = Constructor("NaN")
    				EXIT
    			ENDIF
    			isBase10 = eq(base, 10)
    		ENDIF
    		d = SLICE(arg, 2)
    		// The result will have a non-terminating decimal expansion if base is 10 and arg is not an
    		// integer power of 10.
    		inf = FALSE
    		IFB isBase10 THEN
    			IFB LENGTH(d) > 1 THEN
    				inf = TRUE
    			ELSE
    				k = d[0]
    				WHILE k MOD 10 = 0
    					k = k / 10
    				WEND
    				inf = k <> 1
    			ENDIF
    		ENDIF
    		external = FALSE
    		sd = pr + guard
    		num = naturalLogarithm(arg, sd)
    		IFB isBase10 THEN
    			denominator = getLn10(Ctor, sd + 10)
    		ELSE
    			denominator = naturalLogarithm(base, sd)
    		ENDIF
    		// The result will have 5 rounding digits.
    		r = divide(num, denominator, sd, 1)
    		rd = SLICE(r, 2)
    		// If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,
    		// calculate 10 further digits.
    		//
    		// If the result is known to have an infinite decimal expansion, repeat this until it is clear
    		// that the result is above or below the boundary. Otherwise, if after calculating the 10
    		// further digits, the last 14 are nines, round up and assume the result is exact.
    		// Also assume the result is exact if the last 14 are zero.
    		//
    		// Example of a result that will be incorrectly rounded:
    		// log[1048576](4503599627370502) = 2.60000000000000009610279511444746...
    		// The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it
    		// will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so
    		// the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal
    		// place is still 2.6.
    		k = pr
    		IFB checkRoundingDigits(rd, pr, rm) THEN
    			REPEAT
    				sd = sd + 10
    				num = naturalLogarithm(arg, sd)
    				denominator = IIF(isBase10, getLn10(Ctor, sd + 10), naturalLogarithm(base, sd))
    				r = divide(num, denominator, sd, 1)
    				rd = SLICE(r, 2)
    				IFB !inf THEN
    					// Check for 14 nines from the 2nd rounding digit, as the first may be 4.
    					IFB VAL(COPY(digitsToString(rd), k + 2, 14)) + 1 = 1E+14 THEN
    						r = finalise(r, pr + 1, 0)
    					ENDIF
    					BREAK
    				ENDIF
    				k = k + 10
    			UNTIL !(checkRoundingDigits(rd, k, rm))
    		ENDIF
    		external = TRUE
    		RESULT = finalise(r, pr, rm)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION minus(minuend, subtrahend, isnumeric = FALSE)
    		x = IIF(VARTYPE(minuend) < 8192, Constructor(minuend), minuend)
    		y = IIF(VARTYPE(subtrahend) < 8192, Constructor(subtrahend), subtrahend)
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// If either is not finite...
    		IFB !xIsNum OR !yIsNum THEN
    			// Return NaN if either is NaN
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return y negated if x is finite and y is ±Infinity.
    			// xが有限値でyが無限値ならばyを否定して返す
    			ELSEIF !xIsInf AND yIsInf THEN
    				y[0] = -1 * y[0]
    				RESULT = finiteToString(y)
    			// Return x if y is finite and x is ±Infinity.
    			// yが有限値でxが無限値ならばxを返す
    			ELSEIF yIsNum AND xIsInf THEN
    				RESULT = finiteToString(x)
    			// Return x if both are ±Infinity with different signs.
    			// 両方とも±∞で符号が違うならばxを返す
    			ELSEIF x[0] <> y[0] AND xIsInf AND yIsInf THEN
    				RESULT = finiteToString(x)
    			// Return NaN if both are ±Infinity with the same sign.
    			// 両方とも±∞で符号が同じならばNaNを返す
    			ELSEIF x[0] = y[0] AND xIsInf AND yIsInf THEN
    				RESULT = "NaN"
    			ENDIF
    			EXIT
    		ENDIF
    		// If signs differ...
    		IFB x[0] <> y[0] THEN
    			y[0] = -1 * y[0]
    //			x = finalise(x, pr, rm)
    //			y = finalise(y, pr, rm)
    			RESULT = Decimal.plus(x, y, isnumeric)
    			EXIT
    		ENDIF
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		pr = CtorPrecision
    		rm = CtorRounding
    		// If either is zero...
    		IFB !xd[0] OR !yd[0] THEN
    			// Return y negated if x is zero and y is non-zero.
    			IFB yd[0] THEN
    				y[0] = -1 * y[0]
    			// Return x if y is zero and x is non-zero.
    			ELSEIF xd[0] THEN
    				y = x
    			// Return zero if both are zero.
    			// From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.
    			ELSE
    				RESULT = 0
    				EXIT
    			ENDIF
    			RESULT = IIF(external, finalise(y, pr, rm), y)
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// Calculate base 1e7 exponents.
    		e = GLOBAL.floor(y[1] / LOG_BASE)
    		xe = GLOBAL.floor(x[1] / LOG_BASE)
    		k = xe - e
    		// If base 1e7 exponents differ...
    		IFB k <> 0 THEN
    			xLTy = k < 0
    			IFB xLTy THEN
    				d = SLICE(xd)
    				k = -1 * k
    				len = LENGTH(yd)
    			ELSE
    				d = SLICE(yd)
    				e = xe
    				len = LENGTH(xd)
    			ENDIF
    			DIM tmp[] = CEIL(pr / LOG_BASE), len
    			i = CALCARRAY(tmp, CALC_MAX) + 2
    			IFB k > i THEN
    				k = i
    				RESIZE(d, 1)
    			ENDIF
    			// Prepend zeros to equalise exponents.
    			arrayReverse(d)
    			i = k - 1
    			WHILE i >= 0
    				arrayPush(d, 0)
    				i = i - 1
    			WEND
    			arrayReverse(d)
    			// copy
    			IFB xLTy THEN
    				xd = SLICE(d)
    			ELSE
    				yd = SLICE(d)
    			ENDIF
    		ELSE
    			// Check digits to determine which is the bigger number.
    			i = LENGTH(x) - 2
    			len = LENGTH(y) - 2
    			xLTy = i < len
    			IF xLTy <> 0 THEN len = i
    			FOR i = 0 TO len - 1
    				IFB VAL(xd[i]) <> VAL(yd[i]) THEN
    					xLTy = VAL(xd[i]) < VAL(yd[i])
    					BREAK
    				ENDIF
    			NEXT
    			k = 0
    		ENDIF
    		IFB xLTy <> 0 THEN
    			d = SLICE(xd)
    			xd = SLICE(yd)
    			yd = SLICE(d)
    			y[0] = -1 * y[0]
    		ENDIF
    		len = LENGTH(xd)
    		// Append zeros to `xd` if shorter.
    		// Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.
    		i = LENGTH(yd) - len
    		WHILE i > 0
    			arrayPush(xd, 0)
    			len = len + 1
    			i = i - 1
    		WEND
    		// Subtract yd from xd.
    		i = LENGTH(yd)
    		WHILE i > k
    			i = i - 1
    			IFB VAL(xd[i]) < VAL(yd[i]) THEN
    				j = i
    				j = j - 1
    				WHILE VARTYPE(j+1, VAR_BOOLEAN) AND VARTYPE(xd[j] = 0, VAR_BOOLEAN)
    					xd[j] = BASE - 1
    					j = j - 1
    				WEND
    				xd[j] = VAL(xd[j] )- 1
    				xd[i] = VAL(xd[i]) + BASE
    			ENDIF
    			xd[i] = VAL(xd[i]) - VAL(yd[i])
    		WEND
    		// Remove trailing zeros.
    		len = LENGTH(xd)
    		WHILE len > 0
    			IFB xd[len - 1] = 0 THEN
    				arrayPop(xd)
    				len = LENGTH(xd)
    			ELSE
    				BREAK
    			ENDIF
    		WEND
    		// Remove leading zeros and adjust exponent accordingly.
    		IFB LENGTH(xd) <> 0 THEN
    			WHILE xd[0] = 0
    				arrayShift(xd)
    				e = e - 1
    			WEND
    		ENDIF
    		// Zero?
    		IFB LENGTH(xd) = 0 THEN
    			RESULT = Constructor(IIF(rm=3, -0, 0))
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    			EXIT
    		ENDIF
    		RESIZE(y, 1)
    		arrayMerge(y, xd)
    		y[1] = getBase10Exponent(xd, e)
    		IFB external THEN
    			RESULT = finalise(y, pr, rm)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION modulo(x, y)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)		
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)		
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.
    		IFB (xIsInf OR xIsNaN) OR (yIsNaN OR yIsZero) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		// Prevent rounding of intermediate calculations.
    		external = FALSE
    		IFB CtorModulo = 9 THEN
    			// Euclidian division: q = sign(y) * floor(x / abs(y))
    			// result = x - q * y    where  0 <= result < abs(y)
    			q = divide(x, absoluteValue(y), 0, 3, 1)
    			q[0] = q[0] * y[0]
    		ELSE
    			q = divide(x, y, 0, CtorModulo, 1)
    		ENDIF
    		q = times(q, y)
    		external = TRUE
    		RESULT = minus(x, q)
    	FEND
    	FUNCTION negated(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)		
    		x[0] = -1 * x[0]
    		RESULT = finalise(x)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION plus(augend, addend, isnumeric = FALSE)
    		x = IIF(VARTYPE(augend) < 8192, Constructor(augend), augend)
    		y = IIF(VARTYPE(addend) < 8192, Constructor(addend), addend)
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// If either is not finite...
    		IFB !xIsNum OR !yIsNum THEN
    			// Return NaN if either is NaN.
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return x if y is finite and x is ±Infinity.
    			// yが有限でxが±∞ならばxを返す
    			ELSEIF yIsNum AND xIsInf THEN
    				RESULT = finiteToString(x)//IIF(isNegative(x), "-", "") + "INF"
    			// Return x if both are ±Infinity with the same sign.
    			// 両方とも±∞で符号が同じならばxを返す
    			ELSEIF x[0] = y[0] AND xIsInf AND yIsInf THEN
    				RESULT = finiteToString(x)//IIF(isNegative(x), "-", "") + "INF"
    			// Return NaN if both are ±Infinity with different signs.
    			// 両方とも±∞で符号が違うならばNaNを返す
    			ELSEIF x[0] <> y[0] AND xIsInf AND yIsInf THEN
    				RESULT = "NaN"
    			// Return y if x is finite and y is ±Infinity.
    			// xが有限でyが±∞ならばyを返す
    			ELSEIF xIsNum AND yIsInf THEN
    				RESULT = "INF"//finiteToString(y)//IIF(isNegative(y), "-", "") + "INF"//toString(finalise(y, pr, rm))
    			ENDIF
    			RESULT = Constructor(RESULT)
    			EXIT
    		ENDIF
    		// If signs differ...
    		IFB x[0] <> y[0] THEN
    			y[0] = -1 * y[0]
    			RESULT = Decimal.minus(x, y, isnumeric)
    			EXIT
    		ENDIF
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		pr = CtorPrecision
    		rm = CtorRounding
    		// If either is zero...
    		IFB !xd[0] OR !yd[0] THEN
    			IF !yd[0] THEN y = x
    			RESULT = IIF(external, finalise(y, pr, rm), y)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// Calculate base 1e7 exponents.
    //		value = x[1]/LOG_BASE
    //		k = INT(value) + IIF(value<0 AND value <> INT(value), -1, 0)
    //		value = y[1]/LOG_BASE
    //		e = INT(value) + IIF(value<0 AND value- INT(value) <> 0, -1, 0)
    		k = GLOBAL.floor(x[1] / LOG_BASE)
    		e = GLOBAL.floor(y[1] / LOG_BASE)
    		i = k - e
    		// If base 1e7 exponents differ
    		IFB i <> 0 THEN
    			IFB i < 0 THEN
    				DIM d = SLICE(xd)
    				i = -1 * i
    				len = LENGTH(yd)
    				flg = TRUE
    			ELSE
    				d = SLICE(yd)
    				e = k
    				len = LENGTH(xd)
    				flg = FALSE
    			ENDIF
    			// Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.
    			k = CEIL(pr/LOG_BASE)
    			len = IIF(k > len, k + 1, len + 1)
    //			i = LENGTH(yd)
    //TEXTBLOCK
    			IFB i > len THEN
    				i = len
    				RESIZE(d, 1)
    			ENDIF
    //ENDTEXTBLOCK
    			// Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
    			arrayReverse(d)
    			WHILE i > 0
    				arrayPush(d, 0)
    				i = i - 1
    			WEND
    			arrayReverse(d)
    			// copy
    			IFB flg THEN
    				xd = SLICE(d)
    			ELSE
    				yd = SLICE(d)
    			ENDIF
    		ENDIF
    		len = LENGTH(xd)
    		i = LENGTH(yd)
    		// If yd is longer than xd, swap xd and yd so xd points to the longer array.
    		IFB len - i < 0 THEN
    			i = len
    			d = SLICE(yd)
    			yd = SLICE(xd)
    			xd = SLICE(d)
    		ENDIF
    		// Only start adding at yd.length - 1 as the further digits of xd can be left as they are.
    		DIM carry = 0
    		WHILE i > 0
    			i = i - 1
    			xd[i] = VAL(xd[i]) + VAL(yd[i]) + carry
    			carry = INT(xd[i] / BASE)
    			xd[i] = xd[i] MOD BASE
    		WEND
    		IFB carry THEN
    			// xd.unshift(carry)
    			arrayUnshift(xd, carry)
    			e = e + 1
    		ENDIF
    		// Remove trailing zeros.
    		// No need to check for zero, as +x + +y != 0 && -x + -y != 0		RESULT = ERR_VALUE
    		len = LENGTH(xd)
    		WHILE len > 0
    			IFB xd[len - 1] = 0 THEN
    				arrayPop(xd)
    				len = LENGTH(xd)
    			ELSE
    				BREAK
    			ENDIF
    		WEND
    		RESIZE(y, 1)
    		arrayMerge(y, xd)
    		y[1] = getBase10Exponent(xd, e)
    		IFB external THEN
    			RESULT = finalise(y, pr, rm)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION precision(x, z = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB LENGTH(xd) THEN
    			k = getPrecision(xd)
    			IFB z <> NULL THEN
    				IF z AND x[1] + 1 > k THEN k = x[1] + 1
    			ENDIF
    		ELSE
    			k = "NaN"
    		ENDIF
    		RESULT = k
    	FEND
    	FUNCTION round(x, isNumeric = FALSE)
    		x = Constructor(x)
    		RESULT = finalise(x, x[1] + 1, CtorRounding)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION sine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB !isFinite(x) THEN
    				RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))		
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + CALCARRAY(array, CALC_MAX) + LOG_BASE
    		CtorRounding = 1
    		x = sine2(Ctor, toLessThanHalfPi(Ctor, x))
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant > 2, neg(x), x), pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION squareRoot(x, isNumeric = FALSE)
    		x = Constructor(x)
    		d = SLICE(x, 2)
    		e = x[1]
    		s = x[0]
    		DIM xIsNum = CHKNUM(x[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		// Negative/NaN/Infinity/zero?
    		IFB s <> 1 OR xIsNaN OR xIsInf OR xIsZero THEN
    			RESULT = Constructor(IIF(!s OR s < 0 AND (!d OR d[0]), "NaN", IIF(d, x, 1 / 0)))
    		ENDIF
    		external = FALSE
    		// Initial estimate.
    		n = finiteToString(x)
    //		s = GLOBAL.SQRT(n)
    		DIM SC = CREATEOLEOBJ("ScriptControl")
    		SC.Language = "JScript"
    		s = SC.Eval("Math.sqrt(" + n + ").toPrecision(16)")
    
    		//s = 4.898979485566356//GLOBAL.SQRT(VAL(JOIN(d, "")))
    		// Math.sqrt underflow/overflow?
    		// Pass x to Math.sqrt as integer, then adjust the exponent of the result.
    		IFB s = 0 OR s = 1 / 0 THEN
    			n = digitsToString(d)
    			IF (LENGTH(n) + e) MOD 2 = 0 THEN n = n + "0"
    			s = GLOBAL.SQRT(n)
    			e = floor((e + 1) / 2) - (e < 0 OR e MOD 2)
    			IFB s = 1 / 0 THEN
    				n = "5E" + e
    			ELSE
    				n = toExponential(s)
    				n = SLICE(n, 1, POS("e", n) + 1) + e
    			ENDIF
    			r = Constructor(n)
    		ELSE
    			r = Constructor("" + s)
    		ENDIF
    		e = CtorPrecision
    		sd = e + 3
    		// Newton-Raphson iteration.
    		rep = FALSE
    		WHILE TRUE
    			t = r
    			td = SLICE(t, 2)
    //			tmp = divide(x, t, sd + 2, 1)
    //			tmp = plus(t, tmp)
    //			r = times(tmp, 0.5)
    			r = times(plus(t, divide(x, t, sd + 2, 1)), 0.5)
    			rd = SLICE(r, 2)
    			// TODO? Replace with for-loop and checkRoundingDigits.
    			n = digitsToString(rd)
    			m = COPY(digitsToString(td), 1, sd)
    			IFB m = COPY(n, 1, sd) THEN
    				n = COPY(n, sd - 3 + 1, 4)
    				// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or
    				// 4999, i.e. approaching a rounding boundary, continue the iteration.
    				IFB n = "9999" OR !rep AND n = "4999" THEN
    					// On the first iteration only, check to see if rounding up gives the exact result as the
    					// nines may infinitely repeat.
    					IFB !rep THEN
    						finalise(t, e + 1, 0)
    						IFB eq(times(t, t), x) THEN
    							r = t
    							BREAK
    						ENDIF
    					ENDIF
    					sd = sd + 4
    					rep = 1
    				ELSE
    					// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
    					// If not, then there are further digits and m will be truthy.
    					IFB n <> 0 OR COPY(n, 2) <> "0" AND COPY(n, 1, 1) = "5" THEN
    						// Truncate to the first rounding digit.
    						finalise(r, e + 1, 1)
    						m = !eq(times(r, r), x)
    					ENDIF
    					BREAK
    				ENDIF
    			ENDIF
    		WEND
    		external = TRUE
    		RESULT = finalise(r, e, CtorRounding, m)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION tangent(x, isNumeric = FALSE)//, isHelper = FALSE)
    		x = Constructor(x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		CtorPrecision = pr + 10
    		CtorRounding = 1
    		x = sine(x, NULL)
    		x[0] = 1
    		tmp = times(x, x, NULL)
    		tmp = minus(1, tmp, NULL)
    		tmp = THIS.sqrt(tmp, NULL)
    		x = divide(x, tmp)
    //		x = divide(x, squareRoot(minus(Constructor(1), times(x, x))), pr + 10, 0)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant = 2 OR CtorQuadrant = 4, neg(x), x), pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION times(multiplicand, multiplier, isnumeric = FALSE)
    		x = IIF(VARTYPE(multiplicand) < 8192, Constructor(multiplicand), multiplicand)
    		y = IIF(VARTYPE(multiplier) < 8192, Constructor(multiplier), multiplier)
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		IFB xIsNaN OR yIsNan THEN
    			y[0] = "NaN"
    		ELSE
    			y[0] = y[0] * x[0]
    		ENDIF
    		// If either is NaN, ±Infinity or ±0...
    		IFB (xIsNaN OR yIsNaN) OR (xIsInf OR yIsInf) OR (xIsZero OR yIsZero) THEN
    			// Return NaN if either is NaN.
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.
    			// xが±0、yが±無限大、もしくはyが±0、xが±無限大ならばNaNを返す
    			ELSEIF (xIsZero AND yIsInf) OR (yIsZero AND xIsInf) THEN
    				RESULT = "NaN"
    			// Return ±Infinity if either is ±Infinity.
    			// どちらかが±無限大ならば±無限大を返す
    			ELSEIF xIsInf OR yIsInf THEN
    				RESULT = "INF"
    			// Return ±0 if either is ±0.
    			// どちらかが±0ならば±0を返す
    			ELSEIF xIsZero OR yIsZero THEN
    				RESULT = "0"
    			ENDIF
    			RESULT = Constructor(RESULT)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		e = GLOBAL.floor(x[1] / LOG_BASE) + GLOBAL.floor(y[1] / LOG_BASE)
    		xdL = LENGTH(xd)
    		ydL = LENGTH(yd)
    		// Ensure xd points to the longer array.
    		IFB xdL < ydL THEN
    			r = SLICE(xd)
    			xd = SLICE(yd)
    			yd = SLICE(r)
    			rL = xdL
    			xdL = ydL
    			ydL = rL
    		ENDIF
    		// Initialise the result array with zeros.
    		DIM r[-1]
    		rL = xdL + ydL
    		i = rL
    		WHILE i > 0
    			arrayPush(r, 0)
    			i = i - 1
    		WEND
    		// Multiply!
    		i = ydL
    		WHILE i > 0
    			i = i - 1
    			carry = 0
    			k = xdL + i
    			WHILE k > i
    				t = VAL(r[k]) + VAL(yd[i]) * VAL(xd[k-i-1]) + carry
    				r[k] = t MOD BASE
    				k = k - 1
    				carry = INT(t / BASE)
    			WEND
    			r[k] = (r[k] + carry) MOD BASE
    		WEND
    		// Remove trailing zeros.
    		rL = rL - 1
    		WHILE r[rL] = 0
    			arrayPop(r)
    			rL = rL - 1
    		WEND
    		IFB carry <> 0 THEN
    			e = e + 1
    		ELSE
    			arrayShift(r)
    		ENDIF
    		RESIZE(y, 1)
    		arrayMerge(y, r)
    		y[1] = getBase10Exponent(r, e)
    		IFB external THEN
    			RESULT = finalise(y, CtorPrecision, CtorRounding)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION toBinary(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 2, sd, rm)
    	FEND
    	FUNCTION toDecimalPlaces(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			RESULT = SLICE(x)
    			RESULT = toString(RESULT)
    			EXIT
    		ENDIF
    		checkInt32(dp, 0, MAX_DIGITS)
    		IFB rm = NULL THEN
    			rm = CtorRounding
    		ELSE
    			checkInt32(rm, 0, 8)
    		ENDIF
    		RESULT = finiteToString(finalise(x, dp + x[1] + 1, rm))
    	FEND
    	FUNCTION toExponential(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			str = finiteToString(x, TRUE)
    		ELSE
    			checkInt32(dp, 0, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding 
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			x = finalise(Constructor(x), dp + 1, rm)
    			str = finiteToString(x, TRUE, dp + 1)
    		ENDIF
    		RESULT = IIF(isNeg(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toFixed(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			str = finiteToString(x)
    		ELSE
    			checkInt32(dp, 0, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			y = finalise(Constructor(x), dp + x[1] + 1, rm)
    			str = finiteToString(y, FALSE, dp + y[1] + 1)
    		ENDIF		
    		// To determine whether to add the minus sign look at the value before it was rounded,
    		// i.e. look at `x` rather than `y`.
    		RESULT = IIF(isNeg(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toFraction(x, maxD = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB LENGTH(xd) = 0 THEN
    			RESULT = Constructor(x)
    		ENDIF
    		d0 = Constructor(1)
    		n1 = d0
    		n0 = Constructor(0)
    		d1 = n0	
    		d = Constructor(d1)
    		d[1] = getPrecision(xd) - x[1] - 1
    		e = d[1]
    		k = e MOD LOG_BASE
    		d[2] = POW(10, IIF(k < 0, LOG_BASE + k, k))
    		IFB maxD = NULL THEN
    			// d is 10**e, the minimum max-denominator needed.
    			maxD = IIF(e > 0, d, n1)
    		ELSE
    			n = Constructor(maxD)
    			IFB !isInt(n) <> 0 OR lt(n, n1) THEN
    				RESULT = ERR_VALUE
    				EXIT
    			ENDIF
    			maxD = IIF(gt(n, d), IIF(e > 0, d, n1), n)
    		ENDIF
    		external = FALSE
    		n = Constructor(digitsToString(xd))
    		pr = CtorPrecision
    		e = LENGTH(xd) * LOG_BASE * 2
    		CtorPrecision = e
    		WHILE TRUE
    			q = divide(n, d, 0, 1, 1)
    			d2 = plus(d0, times(q, d1), NULL)
    			IF cmp(d2, maxD) = 1 THEN BREAK
    			d0 = d1
    			d1 = d2
    			d2 = n1
    			n1 = plus(n0, times(q, d2), NULL)
    			n0 = d2
    			d2 = d
    			d = minus(n, times(q, d2))
    			n = d2
    		WEND
    		d2 = divide(minus(maxD, d0), d1, 0, 1, 1)
    		n0 = plus(n0, times(d2, n1), NULL)
    		d0 = plus(d0, times(d2, d1), NULL)
    		n1[0] = x[0]
    		n0[0] = n1[0]
    		// Determine which fraction is closer to x, n0/d0 or n1/d1?
    		tmp1 = divide(n1, d1, e, 1)
    		tmp1 = minus(tmp1, x)
    		tmp1 = THIS.abs(tmp1)
    		tmp2 = divide(n0, d0, e, 1)
    		tmp2 = minus(tmp2, x)
    		tmp2 = THIS.abs(tmp2)
    		DIM r[-1]
    		IFB cmp(tmp1, tmp2) < 1 THEN
    			arrayPush(r, finiteToString(n1))
    			arrayPush(r, finiteToString(d1))
    		ELSE
    			arrayPush(r, finiteToString(n0))
    			arrayPush(r, finiteToString(d0))
    		ENDIF
    		CtorPrecision = pr
    		external = TRUE
    		RESULT = SLICE(r)
    	FEND
    	FUNCTION toHexadecimal(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 16, sd, rm)
    	FEND
    	FUNCTION toNearest(x, y = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB y = NULL THEN
    			// If x is not finite, return x.
    			IFB !LENGTH(xd) THEN
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			y = Constructor(1)
    			rm = CtorRounding
    		ELSE
    			y = Constructor(y)
    			yd = SLICE(y, 2)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			// If x is not finite, return x if y is not NaN, else NaN.
    			IFB !LENGTH(xd) THEN
    				RESULT = IIF(y[0], x, y)
    			ENDIF
    			// If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.
    			IFB !LENGTH(yd) THEN
    				IF y[0] THEN y[0] = x[0]
    				RESULT = SLICE(y)
    			ENDIF
    			// If y is not zero, calculate the nearest multiple of y to x.
    			IFB yd[0] THEN
    				external = FALSE
    				x = times(divide(x, y, 0, rm, 1), y)
    				external = TRUE
    				finalise(x)
    			ELSE
    				// If y is zero, return zero with the sign of x.
    				y[0] = x[0]
    				x = y
    			ENDIF
    		ENDIF
    		RESULT = SLICE(x)
    		RESULT = .toNumber(RESULT)
    	FEND
    	FUNCTION toNumber(x)
    		str = finiteToString(x)
    		RESULT = VAL(IIF(isNegative(x), "-" + str, str))
    	FEND
    	FUNCTION toOctal(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 8, sd, rm)
    	FEND
    	FUNCTION toPower(base, exponent, isnumeric = FALSE)
    		DIM x = Constructor(base)
    		DIM y = Constructor(exponent)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		DIM yn = VAL(exponent)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either ±Infinity, NaN or ±0?
    		// どちらかが±Infinity、NaNもしくは±0
    		IFB (xIsInf OR yIsInf) OR (xIsNaN OR yIsNaN) OR (xIsZero OR yIsZero) THEN
    			RESULT = POWER(base, exponent)
    			EXIT
    		ENDIF
    		IFB base = "1" THEN
    			RESULT = x
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB exponent = "1" THEN
    			RESULT = finalise(x, pr, rm)
    			EXIT
    		ENDIF
    		// y exponent
    		e = GLOBAL.floor(y[1]/LOG_BASE)
    		// If y is a small integer use the 'exponentiation by squaring' algorithm.
    		DIM k = IIF(yn < 0, -1 * yn, yn)
    		IFB e >= LENGTH(y) - 2 - 1 AND k <= MAX_SAFE_INTEGER THEN
    			DIM r = intPow(Ctor, x, k, pr)
    			RESULT = IIF(VAL(y[0]) < 0, dividedBy("1", r), toString(finalise(r, pr, rm)))
    			EXIT
    		ENDIF
    		DIM s = x[0]
    		// if x is negative
    		IFB s < 0 THEN
    			// if y is not an integer
    			IFB e < LENGTH(y) - 2 - 1 THEN
    				RESULT = "NaN"
    				EXIT
    			ENDIF
    			// Result is positive if x is negative and the last digit of integer y is even.
    			IF (y[e+2] AND 1) = 0 THEN s = 1
    			// if x.eq(-1)
    			IFB x[1] = 0 AND x[2] = 1 AND LENGTH(x) - 2 = 1 THEN
    				x[0] = s
    				RESULT = x
    				EXIT
    			ENDIF
    		ENDIF
    		// Estimate result exponent.
    		// x^y = 10^e,  where e = y * log10(x)
    		// log10(x) = log10(x_significand) + x_exponent
    		// log10(x_significand) = ln(x_significand) / ln(10)
    		xd = SLICE(x, 2)
    		k = POWER(digitsToString(xd), yn)
    		IFB k = 0 OR !isFinite(Constructor(k)) THEN
    			e = floor(yn * (LN("0." + digitsToString(xd)) / VAL(LN10) + VAL(x[1]) + 1))
    		ELSE
    			e = Constructor(k)[1]
    		ENDIF
    		// Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.
    		// Overflow/underflow?
    		IFB e > maxE + 1 OR e < minE - 1 THEN
    			IFB e > 0 THEN
    				RESULT = IIF(s >= 0, "INF", "-INF")
    			ELSE
    				RESULT = "0"
    			ENDIF
    			EXIT
    		ENDIF
    		external = FALSE
    		x[0] = 1
    		rounding = x[0]
    		// Estimate the extra guard digits needed to ensure five correct rounding digits from
    		// naturalLogarithm(x). Example of failure without these extra digits (precision: 10):
    		// new Decimal(2.32456).pow('2087987436534566.46411')
    		// should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815
    		DIM array[] = 12, LENGTH(e)
    		k = small(array, 1)
    		// r = x^y = exp(y*ln(x))
    		r = naturalExponential(times(y, naturalLogarithm(x, pr + k)), pr)
    		rd = SLICE(r, 2)
    		// r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)
    		IFB LENGTH(rd) THEN
    			// Truncate to the required precision plus five rounding digits.
    			r = finalise(r, pr + 5, 1)
    			// If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate
    			// the result.
    			IFB checkRoundingDigits(rd, pr, rm) THEN
    				e = pr + 10
    				// Truncate to the increased precision plus five rounding digits.
    				r = finalise(naturalExponential(times(y, naturalLogarithm(x, e + k)), e), e + 5, 1)
    				// Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).
    				IFB COPY(digitsToString(rd), pr + 1 + 1, pr + 15 + 1) + 1 = 1E+14 THEN
    					r = finalise(r, pr + 1, 0)
    				ENDIF
    			ENDIF
    		ENDIF
    		r[0] = s
    		external = TRUE
    		CtorRounding = rm
    		RESULT = finalise(r, pr, rm)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION toPrecision(x, sd = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB sd = NULL THEN
    			str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		ELSE
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN 
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			x = finalise(Constructor(x), sd, rm)
    			str = finiteToString(x, sd <= x[1] OR x[1] <= toExpNeg, sd)
    		ENDIF
    		RESULT = IIF(isNeg(x) AND isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toSignificantDigits(x, sd = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB sd = NULL THEN
    			sd = CtorPrecision
    			rm = CtorRounding
    		ELSE
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    		ENDIF
    		RESULT = toString(finalise(Constructor(x), sd, rm))
    	FEND
    	FUNCTION toString(x)
    		str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		RESULT = IIF(isNegative(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION truncated(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 1)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION valueOf(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		RESULT = IIF(isNeg(x), "-" + str, str)
    	FEND
    	//////////////////////////////
    	// 短縮形
    	//////////////////////////////
    	FUNCTION abs(x)
    		RESULT = absoluteValue(x)
    	FEND
    	FUNCTION acos(x)
    		RESULT = inverseCosine(x)
    	FEND
    	FUNCTION acosh(x)
    		RESULT = inverseHyperbolicCosine(x)
    	FEND
    	FUNCTION asin(x)
    		RESULT = inverseSine(x)
    	FEND
    	FUNCTION asinh(x)
    		RESULT = inverseHyperbolicSine(x)
    	FEND
    	FUNCTION atan(x)
    		RESULT = inverseTangent(x)
    	FEND	
    	FUNCTION atanh(x)
    		RESULT = inverseHyperbolicTangent(x)
    	FEND
    	FUNCTION add(augend, addend, isnumeric = FALSE)
    		RESULT = plus(augend, addend, isnumeric)
    	FEND
    	FUNCTION calc(str, pr = 20, rm = 4)
    		RESULT = calculate(str, pr, rm)
    	FEND
    	FUNCTION cbrt(x)
    		RESULT = cubeRoot(x)
    	FEND
    	FUNCTION clamp(x, min, max)
    		RESULT = clampedTo(x, min, max)
    	FEND
    	FUNCTION cmp(x, y)
    		RESULT = comparedTo(x, y)
    	FEND
    	FUNCTION cos(x)
    		RESULT = cosine(x)
    	FEND
    	FUNCTION cosh(x, isNumeric = FALSE)
    		RESULT = hyperbolicCosine(x, isNumeric)
    	FEND
    	FUNCTION divide(dividend, divisor, pr = 20, rm = 4, dp = NULL, _base = NULL, isnumeric = FALSE)
    		RESULT = dividedBy(dividend, divisor, pr, rm, dp, _base, isnumeric)
    	FEND
    	FUNCTION div(dividend, divisor, pr = 20, rm = 4, dp = NULL, _base = NULL, isnumeric = FALSE)
    		RESULT = dividedBy(dividend, divisor, pr, rm, dp, _base, isnumeric)
    	FEND
    	FUNCTION divToInt(x, y)
    		RESULT = dividedToIntegerBy(x, y)
    	FEND
    	FUNCTION dp(x)
    		RESULT = decimalPlaces(x)
    	FEND
    	FUNCTION eq(x, y)
    		RESULT = equals(x, y)
    	FEND
    	FUNCTION exp(x)
    		RESULT = naturalExponential(x)
    	FEND
    	FUNCTION gt(x, y)
    		RESULT = greaterThan(x, y)
    	FEND
    	FUNCTION gte(x, y)
    		RESULT = greaterThanOrEqualTo(x, y)
    	FEND
    	FUNCTION isInt(x)
    		RESULT = isInteger(x)
    	FEND
    	FUNCTION isNeg(x)
    		RESULT = isNegative(x)
    	FEND
    	FUNCTION isPos(x)
    		RESULT = isPositive(x)
    	FEND
    	FUNCTION ln(x)
    		RESULT = naturalLogarithm(x)
    	FEND
    	FUNCTION log(arg, base)
    		RESULT = logarithm(arg, base)
    	FEND
    	FUNCTION lt(x, y)
    		RESULT = lessThan(x, y)
    	FEND
    	FUNCTION lte(x, y)
    		RESULT = lessThanOrEqualTo(x, y)
    	FEND
    	FUNCTION mod(x, y)
    		RESULT = modulo(x, y)
    	FEND
    	FUNCTION mul(multiplicand, multiplier, isnumeric = FALSE)
    		RESULT = times(multiplicand, multiplier, isnumeric)
    	FEND
    	FUNCTION neg(x)
    		RESULT = negated(x)
    	FEND
    	FUNCTION pow(base, exponent)
    		RESULT = toPower(base, exponent)
    	FEND
    	FUNCTION sd(x, z = NULL)
    		RESULT = precision(x, z)
    	FEND
    	FUNCTION sin(x)
    		RESULT = sine(x)
    	FEND
    	FUNCTION sinh(x, isNumeric = FALSE)
    		RESULT = hyperbolicSine(x, isNumeric)
    	FEND
    	FUNCTION sqrt(x, isNumeric = FALSE)
    		RESULT = squareRoot(x, isNumeric)
    	FEND
    	FUNCTION sub(minuend, subtrahend, isnumeric = FALSE)
    		RESULT = minus(minuend, subtrahend, isnumeric)
    	FEND
    	FUNCTION tan(x)
    		RESULT = tangent(x)
    	FEND
    	FUNCTION tanh(x)
    		RESULT = hyperbolicTangent(x)
    	FEND
    	//////////////////////////////
    	// ヘルパー関数
    	//////////////////////////////
    	FUNCTION digitsToString(d)
    		indexOfLastWord = LENGTH(d) - 1
    		str = ""
    		w = d[0]
    		IFB indexOfLastWord > 0 THEN
    			str = str + w
    			DIM i = 1
    			WHILE i < indexOfLastWord
    				ws = d[i] + ""
    				k = LOG_BASE - LENGTH(ws)
    				IF k THEN str = str + getZeroString(k)
    				str = str + ws
    				i = i + 1
    			WEND
    			w = d[i]
    			ws = w + ""
    			k = LOG_BASE - LENGTH(ws)
    			IF k THEN str = str + getZeroString(k)
    		ELSEIF w = 0 THEN
    			RESULT = "0"
    			EXIT
    		ENDIF
    		// Remove trailing zeros of last w.
    		WHILE w MOD 10 = 0 AND w <> 0
    			w = w / 10
    		WEND
    		RESULT = str + w
    	FEND
    	FUNCTION checkInt32(i, min, max)
    		IF i <> VARTYPE(i, VAR_INTEGER) OR i < min OR i > max THEN RESULT = ERR_VALUE
    	FEND
    	FUNCTION checkRoundingDigits(d, i, rm, repeating = NULL)
    		// Get the length of the first word of the array d.
    		k = d[0]
    		WHILE k >= 10
    			i = i - 1
    			k = k / 10
    		WEND
    		// Is the rounding digit in the first word of d?
    		i = i - 1
    		IFB i < 0 THEN
    			i = i + LOG_BASE
    			di = 0
    		ELSE
    			di = VAL(CEIL((i + 1) / LOG_BASE))
    			i = i MOD LOG_BASE
    		ENDIF
    		// i is the index (0 - 6) of the rounding digit.
    		// E.g. if within the word 3487563 the first rounding digit is 5,
    		// then i = 4, k = 1000, rd = 3487563 % 1000 = 563		RESULT = ERR_VALUE
    		k = POWER(10, LOG_BASE - i)
    		IFB di > UBound(d) THEN
    			rd = 0
    		ELSE
    			rd = d[di] MOD k
    		ENDIF
    		IFB repeating = NULL THEN
    			IFB i < 3 THEN
    				IFB i = 0 THEN
    					rd = rd / 100
    				ELSEIF i = 1 THEN
    					rd = rd / 10
    				ENDIF
    				r = rm < 4 AND rd = 99999 OR rm > 3 AND rd = 49999 OR rd = 50000 OR rd = 0
    			ELSE
    				IFB di + 1 > UBound(d) THEN
    					n = 0
    				ELSE
    					n = d[di + 1]
    				ENDIF
    				r = (rm < 4 AND rd + 1 = k OR rm > 3 AND rd + 1 = k / 2) AND (n / k / 100) = POWER(10, i - 2) - 1 OR (rd = k / 2 OR rd = 0) AND (n / k / 100) = 0
    			ENDIF
    		ELSE
    			IFB i < 4 THEN
    				IFB i = 0 THEN
    					rd = rd / 1000
    				ELSEIF i = 1 THEN
    					rd = rd / 100
    				ELSEIF i = 2 THEN
    					rd = rd / 10
    				ENDIF
    				r = (repeating OR rm < 4) AND rd = 9999 OR !repeating AND rm > 3 AND rd = 4999
    			ELSE
    				IFB di + 1 > UBound(d) THEN
    					n = 0
    				ELSE
    					n = d[di + 1]
    				ENDIF
    				r = ((repeating OR rm < 4) AND rd + 1 = k OR (!repeating AND rm > 3) AND rd + 1 = k / 2) AND (n / k / 1000) = POWER(10, i - 3) - 1
    			ENDIF
    		ENDIF
    		RESULT = VARTYPE(r, VAR_BOOLEAN)
    	FEND
    	FUNCTION convertBase(str, baseIn, baseOut)
    		CONST NUMERALS = "0123456789abcdef"
    		DIM arr[0] = 0
    		DIM i = 0
    		DIM strL = LENGTH(str)
    		WHILE i < strL
    			arrL = LENGTH(arr)
    			WHILE TRUE
    				arrL = arrL - 1
    				IF arrL < 0 THEN BREAK
    				arr[arrL] = arr[arrL] * baseIn
    			WEND
    			arr[0] = arr[0] + (POS(COPY(str, i+1, 1), NUMERALS) - 1)
    			i = i + 1
    			j = 0
    			WHILE j < LENGTH(arr)
    				IFB arr[j] > baseOut - 1 THEN
    					IF j + 1 > UBound(arr) THEN
    						RESIZE(arr, j + 1)
    						arr[j+1] = 0
    					ENDIF
    					arr[j+1] = arr[j+1] + INT(arr[j] / baseOut)
    					arr[j] = arr[j] MOD baseOut
    				ENDIF
    				j = j + 1
    			WEND
    		WEND
    		arrayReverse(arr)
    		RESULT = SLICE(arr)
    	FEND
    	FUNCTION cosine2(Ctor, x)
    		IFB isZero(x) THEN
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		// Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1
    		// i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1
    		// Estimate the optimum number of times to use the argument reduction.
    		xd = x
    		xd = SLICE(xd, 2)
    		len = LENGTH(xd)
    		IFB len < 32 THEN
    			k = GLOBAL.CEIL(len / 3)
    			y = "" + (1 / tinyPow(4, k))
    		ELSE
    			k = 16
    			y = "2.3283064365386962890625e-10"
    		ENDIF
    		CtorPrecision = CtorPrecision + k
    		x = taylorSeries(Ctor, 1, times(x, y), Constructor(1))
    		// Reverse argument reduction
    		i = k
    		WHILE i > 0
    			i = i - 1
    			cos2x = times(x, x, NULL)
    			x = times(cos2x, cos2x, NULL)
    			x = minus(x, cos2x, NULL)
    			x = times(x, 8, NULL)
    			x = plus(x, 1, NULL)
    		WEND
    		CtorPrecision = CtorPrecision - k
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION finalise(x, sd = NULL, rm = NULL, isTruncated = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		WHILE sd <> NULL
    			// Get the length of the first word of the digits array xd.
    			digits = 1
    			k = VAL(xd[0])
    			WHILE k >= 10
    				digits = digits + 1
    				k = k / 10
    			WEND
    			i = sd - digits
    			// Is the rounding digit in the first word of xd?
    			IFB i < 0 THEN
    				i = i + LOG_BASE
    				j = sd
    				xdi = 0
    				w = xd[xdi]
    				// Get the rounding digit at index j of w.
    				rd = w / POWER(10, digits - j - 1) MOD 10
    			ELSE
    				xdi = GLOBAL.CEIL((i+1)/LOG_BASE)
    				k = LENGTH(xd)
    				IFB xdi >= k THEN
    					IFB isTruncated THEN
    						// Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.
    						WHILE k <= xdi
    							arrayPush(xd, 0)
    							k = k + 1
    						WEND
    						rd = 0
    						w = rd
    						digits = 1
    						i = i MOD LOG_BASE
    						j = i - LOG_BASE + 1
    					ELSE
    						BREAK
    					ENDIF
    				ELSE
    					k = xd[xdi]
    					w = k
    					// Get the number of digits of w.
    					digits = 1
    					WHILE k >= 10
    						digits = digits + 1
    						k = k / 10
    					WEND
    					// Get the index of rd within w.
    					i = i MOD LOG_BASE
    					// Get the index of rd within w, adjusted for leading zeros.
    					// The number of leading zeros of w is given by LOG_BASE - digits.
    					j = i - LOG_BASE + digits
    					// Get the rounding digit at index j of w.
    					rd = IIF(j < 0, 0, INT(w / POWER(10, digits - j - 1)) MOD 10)
    				ENDIF
    			ENDIF
    			// Are there any non-zero digits after the rounding digit?
    			// isTruncated = 
    			//IF isTruncated OR sd < 0 OR x[xdi+3] = EMPTY THEN 
    			//isTruncated = FALSE
    			IFB isTruncated THEN
    			ELSEIF sd < 0 THEN
    				isTruncated = TRUE
    			ELSEIF xdi > UBound(xd) THEN
    				isTruncated = TRUE
    			ELSEIF IIF(j < 0, w, w MOD POWER(10, digits - j - 1)) THEN
    				isTruncated = TRUE
    			ENDIF
    			// The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right
    			// of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression
    			// will give 714.
    			IFB i > 0 THEN
    				tmp = IIF(j > 0, w / POWER(10, digits - j), 0)
    			ELSE
    				IFB xdi = 0 THEN
    					tmp = 0
    				ELSE
    					tmp = xd[xdi - 1] MOD 10
    				ENDIF
    			ENDIF
    			IF isTruncated = NULL THEN isTruncated = FALSE
    			roundUp = IIF(rm < 4, _
    							// truepart
    							(VARTYPE(rd, VAR_BOOLEAN) OR VARTYPE(isTruncated, VAR_BOOLEAN)) AND (rm = 0 OR VARTYPE(rm = IIF(x[0] < 0, 3, 2), VAR_BOOLEAN)), _
    							// falsepart
    							rd > 5 OR rd = 5 AND (rm = 4 OR isTruncated OR rm = 6 AND _
    								// Check whether the digit to the left of the rounding digit is odd.
    								bitAnd(tmp, 1) OR rm = IIF(x[0] < 0, 8, 7) _
    							) _
    						)
    			IFB sd < 1 OR !xd[0] THEN
    				RESIZE(xd, 0)
    				IFB roundUp THEN
    					// Convert sd to decimal places.
    					sd = sd - (x[1] + 1)
    					// 1, 0.1, 0.01, 0.001, 0.0001 etc.
    					x[2] = POWER(10, (LOG_BASE - sd MOD LOG_BASE) MOD LOG_BASE)
    					x[1] = -1 * sd
    				ELSE
    					// Zero.
    					RESIZE(x, 2)
    					x[2] = 0
    					x[1] = 0
    				ENDIF
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			// Remove excess digits.
    			IFB i = 0 THEN
    				RESIZE(xd, xdi-1)
    				RESIZE(x, 1)
    				arrayMerge(x, xd)
    				k = 1
    				xdi = xdi - 1
    			ELSE
    				RESIZE(xd, xdi)
    				RESIZE(x, 1)
    				arrayMerge(x, xd)
    				k = POWER(10, LOG_BASE-i)
    				// E.g. 56700 becomes 56000 if 7 is the rounding digit.
    				// j > 0 means i > number of leading zeros of w.
    				IFB j > 0 THEN
    					RESIZE(x, xdi+2)
    					xd[xdi] = INT(INT(w / POWER(10, digits-j)) MOD POWER(10, j)) * k
    					x[xdi+2] = xd[xdi]
    				ELSE
    					RESIZE(x, xdi+2)
    					xd[xdi] = 0
    					x[xdi+2] = xd[xdi]
    				ENDIF
    			ENDIF
    			IFB roundUp THEN
    				WHILE TRUE
    					// Is the digit to be rounded up in the first word of xd?
    					IFB xdi = 0 THEN
    						// i will be the length of xd[0] before k is added.
    						i = 1
    						j = VAL(xd[0])
    						WHILE j >= 10
    							i = i + 1
    							j = j / 10
    						WEND
    						xd[0] = VAL(xd[0]) + k
    						x[2] = xd[0]
    						j = VAL(xd[0])
    						k = 1
    						WHILE j >= 10
    							k = k + 1
    							j = j / 10
    						WEND
    						// if i != k the length has increased.
    						IFB i <> k THEN
    							x[1] = x[1] + 1
    							IF x[2] = BASE THEN x[2] = 1
    						ENDIF
    						BREAK
    					ELSE
    						xd[xdi] = xd[xdi] + k
    						IF xd[xdi] <> BASE THEN BREAK
    						xd[xdi] = 0
    						xdi = xdi - 1
    						k = 1
    					ENDIF
    				WEND
    			ENDIF
    			// Remove trailing zeros.
    			FOR i = UBound(xd) TO 0 STEP -1
    				IFB xd[i] = 0 THEN
    					arrayPop(xd)
    				ELSE
    					BREAK
    				ENDIF
    			NEXT
    			BREAK
    		WEND
    		IFB external THEN
    			// Overflow?
    			IFB x[1] > maxE THEN
    				// Infinity
    				RESIZE(x, 1)
    				x[1] = EMPTY				// 仮の値
    			// Underflow?
    			ELSEIF x[1] < minE THEN
    				x[1] = 0
    				RESIZE(x, 2)
    				x[2] = 0
    			ENDIF
    		ENDIF
    		RESIZE(x, 1)
    		arrayMerge(x, xd)
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION finiteToString(x, isExp = FALSE, sd = EMPTY)
    		IFB !isFinite(x) THEN
    			RESULT = nonFiniteToString(x)
    			EXIT
    		ENDIF
    		e = x[1]
    		xd = SLICE(x, 2)
    		str = digitsToString(xd)
    		len = LENGTH(str)
    		IFB isExp THEN
    			k = sd - len
    			IFB sd AND k > 0 THEN
    				str = COPY(str, 1, 1) + "." + COPY(str, 2) + getZeroString(k)
    			ELSEIF len > 1 THEN
    				str = COPY(str, 1, 1) + "." + COPY(str, 2)
    			ENDIF
    			str = str + IIF(x[1] < 0, "e", "e+") + x[1]
    		ELSEIF e < 0 THEN
    			str = "0." + getZeroString(-1 * e - 1) + str
    			k = sd - len
    			IF sd AND k > 0 THEN str = str + getZeroString(k)
    		ELSEIF e >= len THEN
    			str = str + getZeroString(e + 1 - len)
    			k = sd - e - 1
    			IF sd AND k > 0 THEN str = str + "." + getZeroString(k)
    		ELSE
    			k = e + 1
    			IF k < len THEN str = COPY(str, 1, k) + "." + COPY(str, k+1)
    			k = sd - len
    			IFB sd AND k > 0 THEN
    				IF e + 1 = len THEN str = str + "."
    				str = str + getZeroString(k)
    			ENDIF
    		ENDIF
    		RESULT = str
    	FEND
    	FUNCTION getBase10Exponent(digits[], e)
    		DIM w = digits[0]
    		e = e * LOG_BASE
    		WHILE w >= 10
    			e = e + 1
    			w = w / 10
    		WEND
    		RESULT = e
    	FEND
    	FUNCTION getLN10(Ctor, sd, pr = NULL)
    		IFB sd > LN10PRECISION THEN
    			// Reset global state in case the exception is caught.
    			external = TRUE
    			IF pr THEN CtorPrecision = pr
    		ENDIF
    		RESULT = finalise(Constructor(LN10), sd, 1, TRUE)
    	FEND
    	FUNCTION getPI(Ctor, sd, rm)
    		IFB sd > PI_PRECISION THEN
    			RESULT = ERR_VALUE
    		ELSE
    			RESULT = finalise(Constructor(PI), sd, rm, TRUE)
    		ENDIF
    	FEND
    	FUNCTION getPrecision(digits)
    		w = LENGTH(digits) - 1
    		len = w * LOG_BASE + 1
    		w = digits[w]
    		// If non-zero...
    		IFB w <> 0 THEN
    			// Subtract the number of trailing zeros of the last word.
    			WHILE w MOD 10 = 0
    				len = len - 1
    				w = w / 10
    			WEND
    			// Add the number of digits of the first word.
    			w = digits[0]
    			WHILE VAL(w) >= 10
    				len = len + 1
    				w = w / 10
    			WEND
    		ENDIF
    		RESULT = len
    	FEND
    	FUNCTION getZeroString(k)
    		zs = ""
    		WHILE k > 0
    			zs = zs + "0"
    			k = k - 1
    		WEND
    		RESULT = zs
    	FEND
    	FUNCTION intPow(Ctor, x, n, pr)
    		DIM isTruncated
    		DIM r = Constructor("1")
    		// Max n of 9007199254740991 takes 53 loop iterations.
    		// Maximum digits array length; leaves [28, 34] guard digits.
    		DIM k = CEIL(pr / LOG_BASE + 4)
    		external = FALSE
    		WHILE TRUE
    			IFB n MOD 2 THEN
    				r = times(r, x)
    				rd = SLICE(r, 2)
    				IF truncate(rd, k) THEN isTruncated = TRUE
    			ENDIF
    			n = GLOBAL.floor(n/2)
    			IFB n = 0 THEN
    				rd = SLICE(r, 2)
    				// To ensure correct rounding when r.d is truncated, increment the last word if it is zero.
    				n = LENGTH(rd) - 1
    				IF isTruncated AND rd[n] = 0 THEN rd[n] = rd[n] + 1
    				BREAK
    			ENDIF
    			x = times(x, x)
    			xd = SLICE(x, 2)
    			truncate(xd, k)
    		WEND
    		external = TRUE
    		RESULT = r
    	FEND
    	FUNCTION isOdd(n)
    		nd = SLICE(n, 2)
    		RESULT = nd[LENGTH(nd) - 1] AND 1
    	FEND
    	FUNCTION maxOrMin(Ctor, args, ltgt)
    		RESULT = ERR_VALUE
    	FEND
    	FUNCTION naturalExponential(x, sd = NULL, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)				
    		rep = 0
    		i = 0
    		k = 0
    		rm = CtorRounding
    		pr = CtorPrecision
    		// 0/NaN/Infinity
    		IFB (x[0] = 1 AND x[1] = 0 AND x[2] = 0) OR x[1] = NULL OR x[1] > 17 THEN
    			
    		ENDIF
    		IFB sd = NULL THEN
    			external = FALSE
    			wpr = pr
    		ELSE
    			wpr = sd
    		ENDIF
    		t = Constructor(0.03125)
    		// while abs(x) >= 0.1
    		WHILE x[1] > -2
    			// x = x / 2^5
    			x = times(x, t)
    			k = k + 5
    		WEND
    		// Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision
    		// necessary to ensure the first 4 rounding digits are correct.
    		guard = INT(GLOBAL.LN(POWER(2, k)) / MathLN10 * 2 + 5)
    		wpr = wpr + guard
    		sum = Constructor("1")
    		pow = sum
    		denominator = pow
    		precision = wpr
    		WHILE TRUE
    			pow = finalise(times(pow, x), wpr, 1)
    			i = i + 1
    			denominator = times(denominator, i)
    			t = plus(sum, divide(pow, denominator, wpr, 1))
    			td = SLICE(t, 2)
    			sumd = SLICE(sum, 2)
    			IFB COPY(digitsToString(td), 1, wpr) = COPY(digitsToString(sumd), 1, wpr) THEN
    				j = k
    				j = j - 1
    				WHILE j >= 0
    					sum = finalise(times(sum, sum), wpr, 1)
    					j = j - 1
    				WEND
    				// Check to see if the first 4 rounding digits are [49]999.
    				// If so, repeat the summation with a higher precision, otherwise
    				// e.g. with precision: 18, rounding: 1
    				// exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)
    				// `wpr - guard` is the index of first rounding digit.				
    				IFB sd = NULL THEN
    					sumd = SLICE(sum, 2)
    					IFB rep < 3 AND checkRoundingDigits(sumd, wpr - guard, rm, rep) THEN
    						precision = wpr = wpr + 10
    						t = Constructor(1)
    						pow = t
    						denominator = pow
    						i = 0
    						rep = rep + 1
    					ELSE
    						precision = pr
    						RESULT = finalise(sum, precision, rm, external = TRUE)
    						IF isnumeric = NULL THEN EXIT
    						RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))						
    						EXIT
    					ENDIF
    				ELSE
    					precision = pr
    					RESULT = sum
    					IF isnumeric = NULL THEN EXIT
    					RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    					EXIT
    				ENDIF
    			ENDIF
    			sum = t
    		WEND
    	FEND
    	FUNCTION naturalLogarithm(y, sd = NULL, isNumeric = FALSE)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)		
    		n = 1
    		guard = 10
    		x = y
    		xd = SLICE(x, 2)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		rm = CtorRounding
    		pr = CtorPrecision
    		// Is x negative or Infinity, NaN, 0 or 1?
    		IFB x[0] < 0 THEN
    //			RESULT = Constructor(0)
    			EXIT
    		ENDIF
    		IFB sd = NULL THEN
    			external = FALSE
    			wpr = pr
    		ELSE
    			wpr = sd
    		ENDIF
    		wpr = wpr + guard
    		Ctorprecision = wpr
    		c = digitsToString(xd)
    		c0 = COPY(c, 1, 1)
    		e = x[1]
    		IFB .lessThan(GLOBAL.ABS(e), "1.5e+15") THEN
    			// Argument reduction.
    			// The series converges faster the closer the argument is to 1, so using
    			// ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b
    			// multiply the argument by itself until the leading digits of the significand are 7, 8, 9,
    			// 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can
    			// later be divided by this number, then separate out the power of 10 using
    			// ln(a*10^b) = ln(a) + b*ln(10).
    
    			// max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).
    			//while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {
    			// max n is 6 (gives 0.7 - 1.3)
    			WHILE c0 < 7 AND c0 <> 1 OR c0 = 1 AND COPY(c, 1, 1) > 3
    				x = times(x, y)
    				xd = SLICE(x, 2)
    				c = digitsToString(xd)
    				c0 = COPY(c, 1, 1)
    				n = n + 1
    			WEND
    			e = x[1]
    			IFB c0 > 1 THEN
    				x = Constructor("0." + c)
    				e = e + 1
    			ELSE
    				x = Constructor(c0 + "." + COPY(c, 2))
    			ENDIF
    		ELSE
    			// The argument reduction method above may result in overflow if the argument y is a massive
    			// number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this
    			// function using ln(x*10^e) = ln(x) + e*ln(10).
    			t = times(getLn10(Ctor, wpr + 2, pr), e)
    			x = plus(naturalLogarithm(Constructor(c0 + "." + COPY(c, 2)), wpr - guard), t)
    			precision = pr
    			external = TRUE
    			RESULT = IIF(sd = NULL, finalise(x, pr, rm, external), x)
    			EXIT
    		ENDIF
    		// x1 is x reduced to a value near 1.
    		x1 = x
    		// Taylor series.
    		// ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
    		// where x = (y - 1)/(y + 1)    (|x| < 1)
    		x = divide(minus(x, "1"), plus(x, "1"), wpr, 1)
    		numerator = x
    		sum = numerator
    		sumd = SLICE(sum, 2)
    		x2 = finalise(times(x, x), wpr, 1)
    		denominator = 3
    		WHILE TRUE
    			numerator = finalise(times(numerator, x2), wpr, 1)
    			t = plus(sum, divide(numerator, constructor(denominator), wpr, 1, NULL, NULL, NULL), NULL)
    			td = SLICE(t, 2)
    			IFB COPY(digitsToString(td), 1, wpr) = COPY(digitstoString(sumd), 1, wpr) THEN
    				sum = times(sum, "2")
    				// Reverse the argument reduction. Check that e is not 0 because, besides preventing an
    				// unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.
    				IF e <> 0 THEN sum = plus(sum, times(getLn10(Ctor, wpr + 2, pr), e, NULL), NULL)
    				sum = divide(sum, Constructor(n), wpr, 1)
    				sumd = SLICE(sum, 2)
    				// Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has
    				// been repeated previously) and the first 4 rounding digits 9999?
    				// If so, restart the summation with a higher precision, otherwise
    				// e.g. with precision: 12, rounding: 1
    				// ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.
    				// `wpr - guard` is the index of first rounding digit.
    				IFB sd = NULL THEN
    					rep = 0
    					IFB checkRoundingDigits(sumd, wpr - guard, rm, rep) THEN
    						wpr = wpr + guard
    						precision = wpr
    						x = divide(minus(x1, "1"), plus(x1, "1"), wpr, 1)
    						numerator = x
    						t = numerator
    						x2 = finalise(times(x, x), wpr, 1)
    						rep = 1
    						denominator = wpr
    					ELSE
    						precision = pr
    						external = TRUE
    						RESULT = finalise(sum, precision, rm, external)
    						IF isnumeric = NULL THEN EXIT
    						RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    						EXIT
    					ENDIF
    				ELSE
    					CtorPrecision = pr
    					RESULT = sum
    					IF isnumeric = NULL THEN EXIT
    					RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    					EXIT
    				ENDIF
    			ENDIF
    			sum = t
    			sumd = SLICE(sum, 2)
    			denominator = denominator + 2
    		WEND
    	FEND
    	FUNCTION nonFiniteToString(x[])
    		IFB x[0] = NULL AND x[1] = NULL AND x[2] = FALSE THEN
    			RESULT = "NaN"
    		ELSEIF CHKNUM(x[0]) AND x[1] = NULL AND x[2] = FALSE THEN
    			RESULT = IIF(x[0] > 0, "", "-") + "INF"
    		ENDIF
    	FEND
    	FUNCTION parseDecimal(x, str)
    		// Decimal point?
    		e = POS(".", str) - 1
    		IF e <> 0 THEN str = REPLACE(str, ".", "")
    		// Exponential form?
    		DIM i = POS("e", str)
    		IFB i <> 0 THEN
    			// Determine exponent.
    			IF e < 0 THEN e = i
    			e = VAL(COPY(str, i+1))
    			str = COPY(str, 1, i-1)
    		ELSEIF e < 0 THEN
    			// Integer
    			e = LENGTH(str)
    		ENDIF
    		// Determine leading zeros.
    		i = 0
    		WHILE COPY(str, i+1, 1) = "0"
    			i = i + 1
    		WEND
    		// Determine trailing zeros.
    		len = LENGTH(str)
    		WHILE COPY(str, len, 1) = "0"
    			len = len - 1
    			IF len = 0 THEN BREAK
    		WEND
    		str = COPY(str, i+1, len-i)
    		IFB str <> 0 AND str <> "" THEN
    			len = len - i
    			e = e - i - 1
    			RESIZE(x, 1)
    			x[1] = e
    			//x[2] = 0
    			// Transform base
    			// e is the base 10 exponent.
    			// i is where to slice str to get the first word of the digits array.
          		i = (e + 1) MOD LOG_BASE
    			IF e < 0 THEN i = i + LOG_BASE
    			IFB i < len THEN
    				IF i THEN arrayPush(x, VAL(COPY(str, 1, i)))
    				len = len - LOG_BASE
    				WHILE i < len
    					arrayPush(x, VAL(COPY(str, i+1, LOG_BASE)))
    					i = i + LOG_BASE
    				WEND
    				str = COPY(str, i+1)
    				i = LOG_BASE - LENGTH(str)
    			ELSE
    				i = i - len
    			ENDIF
    			WHILE i > 0
    				str = str + "0"
    				i = i - 1
    			WEND
    			arrayPush(x, VAL(str))
    			IFB external THEN
    				// Overflow?
    				IFB x[1] = maxE THEN
    					// Infinity.
    					x[2] = NULL
    					x[1] = NULL
    				// Underflow?
    				ELSEIF x[1] = minE THEN
    					// Zero.
    					x[1] = 0
    					x[2] = 0
    				ENDIF
    			ENDIF
    		ELSE
    			// Zero.
    			RESIZE(x, 2)
    			x[1] = 0
    			x[2] = 0
    		ENDIF
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION parseOther(x, str)
    		IF POS("Infinity", str) THEN str = REPLACE(str, "Infinity", "INF")
    		IFB POS("_", str) <> 0 THEN
    			
    		ELSEIF str = "INF" OR str = "NaN" THEN
    			IF str = "NaN" THEN x[0] = NULL
    			RESIZE(x, 2)
    			x[1] = NULL
    			x[2] = FALSE
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		IFB reTest(str, isHex) THEN
    			_base = 16
    			str = STRCONV(str, SC_LOWERCASE)
    		ELSEIF reTest(str, isBinary) THEN
    			_base = 2
    		ELSEIF reTest(str, isOctal) THEN
    			_base = 8
    		ELSE
    			
    			EXIT
    		ENDIF
    		// Is there a binary exponent part?
    		i = POS("p", str)
    		IFB i > 0 THEN
    			p = COPY(str, (i+1)+1)
    			str = COPY(str, 2+1, i+1)
    		ELSE
    			p = NULL
    			str = COPY(str, 2+1)
    		ENDIF
    		// Convert `str` as an integer then divide the result by `base` raised to a power such that the
    		// fraction part will be restored.
    		i = POS(".", str)
    		isFloat = i >= 1
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB isFloat THEN
    			str = REPLACE(str, ".", "")
    			len = LENGTH(str)
    			i = len - i
    			// log[10](16) = 1.2041... , log[10](88) = 1.9444....
    			divisor = intPow(Ctor, Constructor(base), i, i * 2)
    		ELSE
    			len = NULL
    			divisor = NULL
    		ENDIF
    		xd = convertBase(str, _base, base)
    		xe = LENGTH(xd) - 1
    		// Remove trailing zeros.
    		i = xe
    		WHILE xd[i] = 0
    			i = i - 1
    			arrayPop(xd)
    		WEND
    		IFB i < 0 THEN
    //			RESULT = 
    			EXIT
    		ENDIF
    		RESIZE(x, 1)
    		x[1] = getBase10Exponent(xd, xe)
    		arrayMerge(x, xd)
    		external = FALSE
    		// At what precision to perform the division to ensure exact conversion?
    		// maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)
    		// log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412
    		// E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.
    		// maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount
    		// Therefore using 4 * the number of digits of str will always be enough.
    		IF isFloat THEN x = divide(x, divisor, len * 4)
    		// Multiply by the binary exponent part if present.
    		IF p <> NULL THEN x = times(x, POWER(2, p))
    		external = TRUE
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION sine2(Ctor, x)
    		xd = x
    		xd = SLICE(xd, 2)
    		len = LENGTH(xd)
    		IFB len < 3 THEN
    			RESULT = IIF(isZero(x), x, taylorSeries(Ctor, 2, x, x))
    			EXIT
    		ENDIF
    		// Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)
    		// i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)
    		// and  sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))
    		
    		// Estimate the optimum number of times to use the argument reduction.
    		k = 1.4 * GLOBAL.SQRT(len)
    		k = INT(IIF(k > 16, 16, k))
    		x = times(x, 1 / tinyPow(5, k), NULL)
    		x = taylorSeries(Ctor, 2, x, x)
    		// Reverse argument reduction
    		d5 = Constructor(5)
    		d16 = Constructor(16)
    		d20 = Constructor(20)
    		WHILE k > 0
    			k = k - 1
    			sin2x = times(x, x, NULL)
    			x = times(x, plus(d5, times(sin2x, minus(times(d16, sin2x, NULL), d20, NULL), NULL), NULL), NULL)
    		WEND
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION taylorSeries(Ctor, n, x, y, isHyperbolic = NULL)
    		i = 1
    		pr = CtorPrecision
    		k = GLOBAL.CEIL(pr / LOG_BASE)
    		external = FALSE
    		x2 = times(x, x)
    		u = Constructor(y)
    		WHILE TRUE
    			multiplicand = times(u, x2)
    			multiplier = Constructor(n * (n + 1))
    			t = divide(multiplicand, multiplier, pr, 1)
    			n = n + 2
    			isHyperbolic = IIF(isHyperbolic = NULL, FALSE, isHyperbolic)
    			u = IIF(isHyperbolic, plus(y, t), minus(y, t))
    			y = divide(times(t, x2), Constructor(n * (n + 1)), pr, 1)
    			n = n + 2
    			t = plus(u, y)
    			td = SLICE(t, 2)
    			ud = SLICE(u, 2)
    			IFB !(UBound(td) < k) THEN
    				j = k
    				TRY
    					WHILE td[j] = ud[j] AND j >= 0
    						j = j - 1
    						IF j = 0 THEN BREAK 2
    					WEND
    				EXCEPT
    				ENDTRY
    				IF j = -1 THEN BREAK
    			ENDIF
    			j = u
    			u = y
    			y = t
    			t = j
    			i = i + 1			
    		WEND
    		external = TRUE
    		RESIZE(td, k)
    		RESIZE(t, 1)
    		arrayMerge(t, td)
    		RESULT = SLICE(t)
    	FEND
    	FUNCTION tinyPow(b, e)
    		DIM n = b
    		e = e - 1
    		WHILE e > 0
    			n = n * b
    			e = e - 1
    		WEND
    		RESULT = n
    	FEND
    	FUNCTION toLessThanHalfPi(Ctor, x)
    		isNeg = x[0] < 0
    		_pi = getPi(Ctor, Ctor.precision, 1)
    		halfPi = times(_pi, "0.5", NULL)
    		x = absoluteValue(x, NULL)
    		IFB lte(x, halfPi) THEN
    			CtorQuadrant = IIF(isNeg, 4, 1)
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = divToInt(x, pi)
    		IFB isZero(t) THEN
    			quadrant = IIF(isNeg, 3, 2)
    		ELSE
    			x = minus(x, times(t, pi))
    			// 0 <= x <pi
    			IFB lte(x, halfPi) THEN
    				quadrant = IIF(isOdd(t), IIF(isNeg, 2, 3), IIF(isNeg, 4, 1))
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			quadrant = IIF(isOdd(t), IIF(isNeg, 1, 4), IIF(isNeg, 3, 2))
    		ENDIF
    		RESULT = abs(minus(x, pi))
    	FEND
    	FUNCTION toLessThanHalfPi2(Ctor, x)
    		isNeg = x[0] < 0
    		_pi = getPi(Ctor, CtorPrecision, 1)
    		halfPi = times(_pi, "0.5", NULL)
    		x = absoluteValue(x, NULL)
    		IFB lte(x, halfPi) THEN
    			CtorQuadrant = IIF(isNeg, 4, 1)
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = divToInt(x, pi)
    		IFB isZero(t) THEN
    			quadrant = IIF(isNeg, 3, 2)
    		ELSE
    			x = minus(x, times(t, pi))
    			// 0 <= x <pi
    			IFB lte(x, halfPi) THEN
    				quadrant = IIF(isOdd(t), IIF(isNeg, 2, 3), IIF(isNeg, 4, 1))
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			quadrant = IIF(isOdd(t), IIF(isNeg, 1, 4), IIF(isNeg, 3, 2))
    		ENDIF
    		RESULT = abs(minus(x, pi))
    	FEND
    	FUNCTION toStringBinary(x, baseOut, sd, rm)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		isExp = IIF(sd <> NULL, TRUE, FALSE)
    		IFB isExp THEN
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    		ELSE
    			sd = CtorPrecision
    			rm = CtorRounding
    		ENDIF
    		IFB !isFinite(x) THEN
    			str = nonFiniteToString(x)
    		ELSE
    			str = finiteToString(x)
    			i = POS(".", str) - 1
    			// Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:
    			// maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))
    			// minBinaryExponent = floor(decimalExponent * log[2](10))
    			// log[2](10) = 3.321928094887362347870319429489390175864
    			IFB isExp THEN
    				_base = 2
    				IFB baseOut = 16 THEN
    					sd = sd * 4 - 3
    				ELSEIF baseOut = 8 THEN
    					sd = sd * 3 - 2
    				ENDIF
    			ELSE
    				_base = baseOut
    			ENDIF
    		ENDIF
    		// Convert the number as an integer then divide the result by its base raised to a power such
    		// that the fraction part will be restored.
    
    		// Non-integer.
    		IFB i >= 0 THEN
    			str = REPLACE(str, ".", "")
    			y = Constructor(1)
    			y[1] = LENGTH(str) - i
    			yd = convertBase(finiteToString(y), 10, _base)
    			RESIZE(y, 1)
    			arrayMerge(y, yd)
    			y[1] = LENGTH(yd)
    		ENDIF
    		xd = convertBase(str, 10, _base)
    		len = LENGTH(xd)
    		e = len
    		// Remove trailing zeros.
    		len = len - 1
    		WHILE xd[len] = 0
    			arrayPop(xd)
    			IF len = 0 THEN BREAK
    			len = len - 1
    		WEND
    		IFB !xd[0] THEN
    			str = IIF(isExp, "0p+0", "0")
    		ELSE
    			IFB i < 0 THEN
    				e = e - 1
    				roundUp = FALSE
    			ELSE
    				// 修正
    				x = Constructor(x)
    				x = RESIZE(x, 1)
    				arrayMerge(x, xd)
    				x[1] = e
    				x = divide(x, y, sd, rm, 0, base)
    				xd = SLICE(x)
    				e = x[1]
    				roundUp = inexact
    			ENDIF
    			// The rounding digit, i.e. the digit after the digit that may be rounded up.
    			IFB sd > UBound(xd) THEN
    				i = NULL
    				roundUp = roundUp OR FALSE
    			ELSE
    				i = xd[sd]
    				roundUp = roundUp OR xd[sd + 1] <> NULL
    			ENDIF
    			k = _base / 2
    			IFB rm < 4 THEN
    				// (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2))
    				roundUp = (i = NULL OR roundUp) AND (rm = 0 OR rm = IIF(x[0] < 0, 3, 2))
    			ELSE
    				// i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||
                	// rm === (x.s < 0 ? 8 : 7));
    				bit = IIF(sd - 1 > UBound(xd), 0, 1)
    				roundUp = (i > k OR i = k AND (rm = 4 OR roundUp OR rm = 6 AND bitAnd(bit, 1)) OR rm = IIF(x[0] < 0, 8, 7))
    			ENDIF
    //			roundUp = IIF(rm < 4, _
    //						(i <> NULL OR roundUp) AND (rm = 0 OR rm = IIF(x[0] < 0, 3, 2)), _
    //						i > k OR i = k AND (rm = 4 OR roundUp OR rm = 6 AND xd[sd - 1] AND 1 OR rm = IIF(x[0] < 0, 8, 7))
    			RESIZE(xd, sd)
    			IFB roundUp THEN
    				// Rounding up may mean the previous digit has to be rounded up and so on.
    				sd = sd - 1
    				WHILE xd[sd] > base - 1
    					xd[sd] = 0
    					IFB !sd THEN
    						e = e + 1
    						arrayUnshift(xd)
    					ENDIF
    				WEND
    			ENDIF
    			// Determine trailing zeros.
    			len = LENGTH(xd)
    			WHILE !xd[len - 1]
    				len = len - 1
    			WEND
    			// E.g. [4, 11, 15] becomes 4bf.
    			str = ""
    			FOR i = 0 TO len - 1
    				str = str + COPY(NUMERALS, VAL(xd[i]) + 1, 1)
    			NEXT
    			// Add binary exponent suffix?
    			IFB isExp THEN
    				IFB len > 1 THEN
    					IFB baseOut = 16 OR baseOut = 8 THEN
    						i = IIF(baseOut = 16, 4, 3)
    						WHILE len MOD i
    							str = str + "0"
    							len = len + 1
    						WEND
    						xd = convertBase(str, base, baseOut)
    						len = xd
    						WHILE !xd[len - 1]
    							len = len - 1
    						WEND
    						// xd[0] will always be be 1
    						str = "1"
    						FOR i = 1 TO len
    							str = str + COPY(NUMERALS, xd[i], 1)
    						NEXT
    					ELSE
    						str = COPY(str, 1, 1) + "." + COPY(str, 2)
    					ENDIF
    				ENDIF
    			ELSEIF e < 0 THEN
    				WHILE e < 0
    					str = "'0" + str
    					e = e + 1
    				WEND
    				str = "0." + str
    			ELSE
    				e = e + 1
    				IFB e > len THEN
    					FOR e = e - len TO 1 STEP -1
    						str = str + "0"
    					NEXT
    				ELSEIF e < len THEN
    					str = COPY(str, 1, e) + "." + COPY(str, e)
    				ENDIF
    			ENDIF
    			str = IIF(baseOut = 16, "0x", IIF(baseOut = 2, "0b", IIF(baseOut = 8, "0o", ""))) + str
    		ENDIF
    		RESULT = IIF(x[0] < 0, "-" + str, str)
    	FEND
    	FUNCTION truncate(arr, len)
    		IFB LENGTH(arr) > len THEN
    			RESIZE(arr, len)
    			RESULT = TRUE
    			EXIT
    		ENDIF
    	FEND
    	//////////////////////////////
    	// その他
    	//////////////////////////////
    	FUNCTION compare(a, b, aL, bL)
    		IFB aL <> bL THEN
    			r = IIF(aL > bL, 1, -1)
    		ELSE
    			r = 0
    			i = r
    			WHILE i < aL
    				IFB a[i] <> b[i] THEN
    					r = IIF(a[i] > b[i], 1, -1)
    					BREAK
    				ENDIF
    				i = i + 1
    			WEND
    		ENDIF
    		RESULT = r
    	FEND
    	FUNCTION Constructor(v)
    		CONST number = 5
    		CONST string = 258
    		DIM x = SAFEARRAY(-1)
    		// Duplicate.
    		IFB isDecimalInstance(v) THEN
    			x[0] = v[0]
    			vd = SLICE(v, 2)
    			IFB external THEN
    				IFB !LENGTH(vd) OR v[1] > maxE THEN
    					// Infinity.
    					RESIZE(x, 2)
    					x[1] = NULL
    					x[2] = NULL
    				ELSEIF v[1] < minE THEN
    					// Zero.
    					RESIZE(x, 2)
    					x[1] = 0
    					x[2] = 0
    				ELSE
    					RESIZE(x, 1)
    					x[1] = v[1]
    					arrayMerge(x, vd)
    				ENDIF
    			ELSE
    				RESIZE(x, 1)
    				x[1] = v[1]
    				arrayMerge(x, vd)
    			ENDIF
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = VARTYPE(v)
    		IFB t = number THEN
    			IFB v = 0 THEN
    				RESIZE(x, 2)
    				x[0] = IIF(1/v<0, -1, 1)
    				x[1] = 0
    				x[2] = 0
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			IFB v < 0 THEN
    				v = -1 * v
    				x[0] = -1
    			ELSE
    				x[0] = 1
    			ENDIF
    			// Fast path for small integers.
    			IFB v < POWER(10, 7) THEN
    				IFB v = VARTYPE(v, VAR_INTEGER) THEN
    					e = 0
    					i = v
    					WHILE i >= 10
    						e = e + 1
    						i = i / 10
    					WEND
    					IFB external THEN
    						IFB e > maxE THEN
    							RESIZE(x, 2)
    							x[1] = NULL
    							x[2] = NULL
    						ELSEIF e < minE THEN
    							RESIZE(x, 2)
    							x[1] = 0
    							x[2] = 0
    						ELSE
    							RESIZE(x, 1)
    							x[1] = e
    							arrayPush(x, v)
    						ENDIF
    					ELSE
    						RESIZE(x, 1)
    						x[1] = e
    						DIM tmp[] = v
    						arrayMerge(x, tmp)
    					ENDIF
    					RESULT = SLICE(x)
    					EXIT
    				// Infinity, NaN
    				ELSEIF v * 0 <> 0 THEN
    					IF !v THEN x[0] = NULL
    					x[1] = NULL
    					x[2] = NULL
    					EXIT
    				ENDIF
    			ENDIF
    			RESULT = parseDecimal(x, v)
    			EXIT
    		ELSEIF v = "NaN" THEN
    			RESIZE(x, 2)
    			x[0] = NULL
    			x[1] = NULL
    			x[2] = FALSE
    			RESULT = SLICE(x)
    			EXIT
    		ELSEIF t <> string THEN
    			RESULT = ERR_VALUE
    			EXIT
    		ENDIF
    		// Minus sign?
    		i = COPY(v, 1, 1)
    		IFB i = "-" THEN
    			v = COPY(v, 2)
    			x[0] = -1
    		ELSE
    			// Plus sign?
    			IF i = "+" THEN v = COPY(v, 1)
    			x[0] = 1
    		ENDIF
    		RESULT = IIF(reTest(v, "^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$"), parseDecimal(x, v), parseOther(x, v))
    	FEND
    	FUNCTION isDecimalInstance(v)
    		RESULT = IIF(isArray(v), TRUE, FALSE)
    	FEND
    	FUNCTION multiplyInteger(x, k, base)
    		DIM carry = 0
    		DIM i = UBound(x)
    		WHILE i >= 0
    			temp = x[i] * k + carry
    			x[i] = INT(temp MOD base)
    			carry = INT(temp / base)
    			i = i - 1
    		WEND
    		IF carry <> 0 THEN arrayUnshift(x, carry)
    		RESULT = SLICE(x)
    	FEND
    	PROCEDURE subtract(Var a, b, aL, base)
    		DIM i = 0
    		// Subtract b from a.
    		WHILE aL > 0
    			aL = aL - 1
    			a[aL] = a[aL] - i
    			i = IIF(a[aL] < b[aL], 1, 0)
    			a[aL] = i * base + a[aL] - b[aL]
    		WEND
    		// Remove leading zeros.
    		WHILE !a[0] AND LENGTH(a) > 1
    			arrayShift(a)
    		WEND
    	FEND
    	//////////////////////////////
    	// 自作関数
    	//////////////////////////////
    	FUNCTION calculate(str, pr = 20, rm = 4)
    		RESULT = tokenize(str)
    		RESULT = toRPN(RESULT)
    		RESULT = calcRPN(RESULT, pr, rm)
    	FEND
    	FUNCTION calcRPN(tokens, pr, rm)
    		DIM denominator[-1]
    		DIM numerator[-1]
    		FOR token IN tokens
    			IFB reTest(token, "[0-9.]+") THEN
    				arrayPush(denominator, "" + 1)
    				arrayPush(numerator, "" + token)
    			ELSEIF token = "u-" THEN
    				arrayPush(numerator, times("-1", arrayPop(numerator)))
    			ELSEIF token = "floor" THEN
    				bottom = arrayPop(denominator)
    				top = arrayPop(numerator)
    				arrayPush(denominator, "1")
    				arrayPush(numerator, floor(dividedBy(top, bottom)))
    			ELSEIF token = "ceil" THEN
    				bottom = arrayPop(denominator)
    				top = arrayPop(numerator)
    				arrayPush(denominator, "1")				
    				arrayPush(numerator, THIS.ceil(dividedBy(top, bottom)))
    			ELSE
    				IFB token = "+" OR token = "-" THEN
    					DIM du = UBound(denominator)
    					DIM nu = UBound(numerator)
    					bottom = times(denominator[du], denominator[du-1])
    					top = EVAL(denominator[du] * numerator[nu-1] + token + numerator[nu] * denominator[du-1])
    					arrayPop(denominator)
    					arrayPop(denominator)
    					arrayPop(numerator)
    					arrayPop(numerator)
    					arrayPush(denominator, bottom)
    					arrayPush(numerator, top)
    				ELSEIF token = "*" THEN
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))					
    				ELSEIF token = "/" THEN
    					swap(denominator[UBound(denominator)], numerator[UBound(numerator)])
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))
    				ELSEIF token = "//" THEN
    					swap(denominator[UBound(denominator)], numerator[UBound(numerator)])
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))
    					bottom = arrayPop(denominator)
    					top = arrayPop(numerator)
    					arrayPush(denominator, "1")
    					arrayPush(numerator, THIS.floor(dividedBy(top, bottom)))
    				ELSEIF token = "%" THEN
    					bottom = dividedBy(arrayPop(numerator), arrayPop(denominator))
    					top = dividedBy(arrayPop(numerator), arrayPop(denominator))
    					arrayPush(denominator, "1")
    					arrayPush(numerator, modulo(top, bottom ))
    				ENDIF
    			ENDIF
    			IFB COPY(denominator[UBound(denominator)], 1, 1) = "-" THEN
    				denominator[UBound(denominator)] = times("-1", denominator[UBound(denominator)])
    				numerator[UBound(numerator)] = times("-1", numerator[UBound(numerator)])
    			ENDIF
    		NEXT
    		DIM x = SAFEARRAY(-1)
    		DIM n = dividedBy(numerator[0], denominator[0])
    		x = Constructor(n)
    		RESULT = toString(finalise(x, pr, rm))
    	FEND
    	FUNCTION cmpPrecedence(token1, token2)
    		DIM operators[] = "+", 0, LEFT, "-", 0, LEFT, "*", 5, LEFT, "/", 5, LEFT, "%", 5, LEFT, "^", 10, RIGHT
    		IFB isOperator(token1) AND isOperator(token2) THEN
    			RESULT = operators[arraySearch(token1, operators)+1] - operators[arraySearch(token2, operators)+1]
    		ELSE
    			RESULT = ERR_VALUE
    		ENDIF
    	FEND
    	FUNCTION isOperator(token)
    		RESULT = reTest(token, "[+\-*/%^]")
    	FEND
    	FUNCTION tokenize(expr)
    		DIM tokens[-1]
    		DIM i = 1
    		DIM str = ""
    		WHILE i <= LENGTH(expr)
    			char = COPY(expr, i, 1)
    			IFB reTest(char, "\s") THEN
    				i = i + 1
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[0-9.]") THEN
    				num = char
    				i = i + 1
    				WHILE i <= LENGTH(expr) AND reTest(COPY(expr, i, 1), "[0-9.]")
    					num = num + COPY(expr, i, 1)
    					i = i + 1
    				WEND
    				arrayPush(tokens, VAL(num))
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[+\-*/^%]") THEN
    IFB COPY(expr, i, 2) = "//" THEN
    	arrayPush(tokens, "//")
    	i = i + 2
    ELSE
    				DIM prev = ""
    				IF LENGTH(tokens) >= 1 THEN prev = tokens[LENGTH(tokens)-1]
    				IFB char = "-" AND (LENGTH(tokens) = 0 OR (VARTYPE(prev) = 258 AND (isOperator(prev) OR prev = "(")))
    					arrayPush(tokens, "u-")
    				ELSE
    					arrayPush(tokens, char)
    				ENDIF
    				i = i + 1
    ENDIF
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[A-Za-z0-9]") THEN
    				str = str + char
    				i = i + 1
    				WHILE i <= LENGTH(expr) AND reTest(COPY(expr, i, 1), "[A-Za-z0-9]")
    					str = str + COPY(expr, i, 1)
    					i = i + 1
    				WEND
    				arrayPush(tokens, str)
    				str = ""
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[()]") THEN
    				IFB str <> "" THEN
    					arrayPush(tokens, str)
    					str = ""
    				ENDIF
    				arrayPush(tokens, char)
    				i = i + 1
    				CONTINUE
    			ENDIF
    		WEND
    		RESULT = SLICE(tokens)
    	FEND
    	FUNCTION toRPN(tokens, pr = 20, rm = 4, isnumeric = FALSE)
    		HASHTBL precedence
    		precedence["^"] = 4
    		precedence["u-"] = 3
    		precedence["*"] = 2
    		precedence["/"] = 2
    		precedence["%"] = 2
    		precedence["+"] = 1
    		precedence["-"] = 1
    		HASHTBL rightAssociative
    		rightAssociative["u-"] = TRUE
    		rightAssociative["^"] = TRUE
    		DIM output[-1]
    		DIM stack[-1]
    		FOR token IN tokens
    			IFB reTest(token, "[0-9]+") THEN
    				arrayPush(output, token)
    			ELSEIF token = "floor" OR token = "ceil" THEN
    				arrayPush(stack, token)
    			ELSEIF token ="(" THEN
    				arrayPush(stack, token)
    			ELSEIF token = ")" THEN
    				WHILE LENGTH(stack) <> 0 AND stack[LENGTH(stack)-1] <> "("
    					arrayPush(output, arrayPop(stack))
    				WEND
    				arrayPop(stack)
    				IF stack[LENGTH(stack) - 1] = "floor" OR stack[LENGTH(stack) - 1] = "ceil" THEN arrayPush(output, arrayPop(stack))
    			ELSE
    				WHILE LENGTH(stack)
    					IFB stack[LENGTH(stack)-1] <> "(" AND _
    						( _
    							precedence[token] < precedence[stack[LENGTH(stack)-1]] OR _
    							( _
    								precedence[token] = precedence[stack[LENGTH(stack)-1]] AND _
    								!rightAssociative[token] _
    							) _
    						) THEN
    						arrayPush(output, arrayPop(stack))
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				arrayPush(stack, token)
    			ENDIF
    		NEXT
    		WHILE LENGTH(stack)
    			arrayPush(output, arrayPop(stack))
    		WEND
    		RESULT = SLICE(output)
    	FEND
    ENDMODULE
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION decimalDigits(num)
    	DIM str = fixed(num)
    	RESULT = IIF(POS(".", str), LENGTH(BETWEENSTR(str, ".")), 0)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   dec : 10進数 
    //   signFlg : 符号付きならばTrueを指定 
    //   digits : 変換した2進数の桁数合わせを自動で行うかを示すブール値、もしくは桁数を表す数値(8,16,24,32,64のいずれか)を指定 
    //   errorMsg : エラーメッセージを出力するかを示すブール値 
    // 【戻り値】
    //   2進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION decToBin(dec, signFlg = FALSE, digits = FALSE, errorMsg = FALSE)
    	// 負数で符号なしならばエラー値を返す
    	IFB dec < 0 AND signFlg = FALSE THEN
    		PRINT "負数の場合signFlgにTrueを指定してください"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	
    	// digitsのビット数が足りなければエラー値を返す、負数なら1桁多く取る
    	IFB VARTYPE(digits) <> VAR_BOOLEAN AND digits < CEIL(LOGN(2, ABS(dec))) + IIF(dec < 0, 1, 0) THEN
    		PRINT "ビット数が足りません"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	
    	// signFlgがTrueかつdigitsがFalseならばエラー値を返す
    	IFB signFlg AND !digits THEN
    		PRINT "signFlgがTrueのときdigitsはFalse以外を選択してください"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    
    	// bin:2進数に変換した結果を代入する変数
    	DIM bin = ""
    	DIM msg = ""
    	DIM isError = FALSE
    	DIM decimalFlg = IIF(POS(".", dec) <> 0, TRUE, FALSE)
    	DIM negativeFlg = IIF(dec < 0, TRUE, FALSE)
    	dec = ABS(dec)
    	
    	// (1) 10進数を整数部と小数部に分ける
    	DIM integer = IIF(decimalFlg, COPY(dec, 1, POS(".", dec) - 1), dec)
    	DIM decimal = IIF(decimalFlg, "0." + COPY(dec, POS(".", dec) + 1), 0)
    
    	// (2) 10進数(整数部)を2進数に変換する。
    	REPEAT
    		bin = (integer MOD 2) + bin
    		integer = INT(integer / 2)
    	UNTIL integer = 0
    
    	// (3) 10進数(小数部)を2進数に変換する。
    	IFB decimalFlg THEN
    		bin = bin + "."
    		DIM loop = 0
    		REPEAT
    			loop = loop + 1
    			decimal = decimal * 2
    			bin = bin + IIF(decimal >= 1, "1", "0")
    			IF decimal > 1 THEN decimal = decimal - 1
    		UNTIL decimal = 1 OR loop > 64
    	ENDIF
    
    	// digitsがFALSE以外なら
    	IFB digits THEN
    		// (4) 2進数の桁合わせを行う
    		DIM tmp = bin
    		DIM binInteger = TOKEN(".", tmp)
    		DIM binDecimal = TOKEN(".", tmp)
    		// 整数部、小数部を4bit単位になるまで拡張
    		// 整数部、4の倍数になるまで整数部の先頭に'0'を追加
    		IF LENGTH(binInteger) MOD 4 <> 0 THEN binInteger = strRepeat("0", 4 - LENGTH(binInteger) MOD 4) + binInteger
    		// 小数部、4の倍数になるまで小数部の末尾に'0'を追加
    		IF LENGTH(binDecimal) MOD 4 <> 0 THEN binDecimal = binDecimal + strRepeat("0", 4 - LENGTH(binDecimal) MOD 4)
    		DIM digit = LENGTH(binInteger + binDecimal)
    
    		// 10進数の場合、一旦自動調整を行う
    		integer = INT(dec)
    
    		IF signFlg AND COPY(binInteger, 1, 1) = "1" THEN binInteger = strRepeat("0", 4) + binInteger
    
    		IFB signFlg THEN
    			IFB integer >= -128 AND integer <= 127 THEN						// -2^7〜2^7-1
    				binInteger = strRepeat("0", 8 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -32768 AND integer <= 32767 THEN				// -2^15〜2^15-1
    				binInteger = strRepeat("0", 16 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -8388608 AND integer <= 8388607 THEN			// -2^23〜2^23-1
    				binInteger = strRepeat("0", 24 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -2147783648 AND integer <= 2147483647 THEN	// -2^31〜2^31-1
    				binInteger = strRepeat("0", 32 - LENGTH(binInteger)) + binInteger
    			ELSE
    				binInteger = strRepeat("0", 64 - LENGTH(binInteger)) + binInteger
    			ENDIF
    		ELSE
    			IFB integer <= 255 THEN				// 2^8-1
    				binInteger = strRepeat("0", 8 - LENGTH(binInteger)) + binInteger		
    			ELSEIF integer <= 65535 THEN		// 2^16-1
    				binInteger = strRepeat("0", 16 - LENGTH(binInteger)) + binInteger		
    			ELSEIF integer <= 16777215 THEN		// 2^24-1
    				binInteger = strRepeat("0", 24 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer <= 4294967295 THEN	// 2^32-1
    				binInteger = strRepeat("0", 32 - LENGTH(binInteger)) + binInteger
    			ELSE
    				binInteger = strRepeat("0", 64 - LENGTH(binInteger)) + binInteger
    			ENDIF
    		ENDIF
    
    		totalDigits = LENGTH(binInteger + binDecimal)
    
    		IFB totalDigits > 64 THEN
    			DIM del32 = totalDigits - 32
    			DIM del64 = totalDigits - 64
    			IFB del32 = LENGTH(binDecimal) AND digits <> 64 THEN
    				binDecimal = ""
    				msg = "32bitを超えたため、小数点以下を削除しました"
    			ELSEIF del32 < LENGTH(binDecimal) AND digits <> 64 THEN
    				binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - del32)
    				msg = "32bitを超えたため、小数点以下の一部を削除しました"
    			ELSEIF del64 = LENGTH(binDecimal) AND del64 <> 0 THEN
    				binDecimal = ""
    				msg = "64bitを超えたため、小数点以下を削除しました"
    			ELSEIF del64 < LENGTH(binDecimal) THEN
    				binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - del64)
    				msg = "64bitを超えたため、小数点以下の一部を削除しました"
    			ELSE
    				msg = "64bitを超えるため、変換できません"
    				isError = TRUE
    			ENDIF
    		ENDIF
    
    		// 整数部、小数部の合計桁数を8,16,24,32,64bit単位になるまで拡張
    		digit = LENGTH(binInteger + binDecimal)
    		DIM array[] = 8, 16, 24, 32, 64
    		FOR item IN array
    			IFB digit <= item THEN
    				binInteger = strRepeat("0", item - digit) + binInteger
    				BREAK
    			ENDIF
    		NEXT
    
    		// 指定ビットに調整
    		// 合計桁数の再設定
    		totalDigits = LENGTH(binInteger + binDecimal)
    		
    		IFB digits = TRUE THEN
    			// 桁合わせを自動調整
    			IFB totalDigits > 64 THEN
    				len = LENGTH(binInteger + binDecimal)
    				WHILE LENGTH(binInteger) > 8 AND len > digits
    					IFB COPY(binInteger, 1, 4) = "0000" THEN
    						binInteger = COPY(binInteger, 5)
    						len = len - 4
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    	
    				WHILE LENGTH(binDecimal) > 4 AND LENGTH(binInteger + binDecimal) > digits
    				IFB COPY(binDecimal, LENGTH(binDecimal) - 4) = "0000" THEN
    					binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - 4)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = binInteger + "." + binDecimal
    
    				binInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				binDecimal = COPY(tmp, POS(".", tmp) + 1)
    				totalDigits = LENGTH(binInteger + binDecimal)
    				IFB totalDigits > 64 THEN
    					isError = TRUE
    					msg = "64bitを超えたため変換できません"
    				ENDIF
    			ENDIF
    		ELSE
    			// 指定ビットに調整
    			IFB totalDigits <= digits THEN
    				binInteger = strPad(binInteger, digits - LENGTH(binDecimal), "0", LEFT)
    			ELSE
    				// 桁あふれ調整
    				totalDigits = LENGTH(binInteger + binDecimal)
    
    				len = LENGTH(binInteger + binDecimal)
    				WHILE LENGTH(binInteger) > 8 AND len > digits
    					IFB COPY(binInteger, 1, 4) = "0000" THEN
    						binInteger = COPY(binInteger, 5)
    						len = len - 4
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    	
    				WHILE LENGTH(binDecimal) > 4 AND LENGTH(binInteger + binDecimal) > digits
    				IFB COPY(binDecimal, LENGTH(binDecimal) - 4) = "0000" THEN
    					binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - 4)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = binInteger + "." + binDecimal
    
    				binInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				binDecimal = COPY(tmp, POS(".", tmp) + 1)
    				len = LENGTH(binInteger + binDecimal)
    				IFB len > digits THEN
    					DIM deleteLength = len - digits
    					IFB deleteLength = LENGTH(binDecimal) THEN
    						binDecimal = ""
    						msg = "指定ビット数にするため小数点以下を削除しました"
    					ELSEIF deleteLength < LENGTH(binDecimal) THEN
    						binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - deleteLength)
    						msg = "指定ビット数にするため小数点以下の一部を削除しました"
    					ELSE
    						isError = TRUE
    						msg = "指定ビット数では変換できません"
    					ENDIF
    				ENDIF
    			ENDIF
    		ENDIF
    
    		bin = binInteger + IIF(binDecimal <> "", "." + binDecimal, "")
    
    		// (5) 入力値がマイナスのため、2進数をマイナス値に変換する
    		IFB negativeFlg THEN
    			// 1の補数
    			bin = bitNot(bin)
    			// 2の補数
    			DIM res = ""
    			DIM carry = "1"
    			FOR i = LENGTH(bin) TO 1 STEP -1
    				IFB carry = "1" THEN
    					SELECT COPY(bin, i, 1)
    						CASE "0"
    							res = "1" + res
    							carry = 0
    						CASE "1"
    							res = "0" + res
    						DEFAULT
    							res = COPY(bin, i, 1) + res
    					SELEND
    				ELSE
    					res = COPY(bin, i, 1) + res
    				ENDIF
    			NEXT
    			bin = res
    		ENDIF
    	ENDIF
    	IF errorMsg AND msg <> "" THEN PRINT msg
    	RESULT = IIF(isError, ERR_VALUE, bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   deg : 角度(度数法) 
    // 【戻り値】
    //   度数法から弧度法に変換した値 
    //////////////////////////////////////////////////
    FUNCTION degToRad(deg)
    	WITH Decimal
    		pr = .CtorPrecision
    		.CtorPrecision = 25
    		RESULT = .times(deg, .dividedBy(Decimal.PI, "180"))
    		.CtorPrecision = pr
    	ENDWITH
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   dividend : 被除数 
    //   divisor : 除数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION division(dividend, divisor)
    	DIM array[] = dividend, divisor
    	DIM g = GCD(array)
    	DIM tmp = divisor / g
    
    	DIM dat[] = 10, 5, 2
    	DIM position = 0
    
    	FOR i = 0 TO UBound(dat)
    		WHILE tmp MOD dat[i] = 0
    			tmp = INT(tmp / dat[i])
    			position = position + 1
    		WEND
    	NEXT
    
    	DIM repetend = ""
    	DIM res = ""
    	tmp = 0
    
    	i = 0
    	WHILE TRUE
    		DIM quotient = INT(dividend/divisor)
    		DIM remainder = dividend MOD divisor
    		IF i = position THEN tmp = remainder
    		IFB i > position THEN
    			repetend = repetend + quotient
    		ELSE
    			res = res + quotient
    			IF i = 0 THEN res = res + "."
    		ENDIF
    		IF i > position AND tmp = remainder THEN BREAK
    		dividend  = remainder * 10
    		i = i  + 1
    	WEND
    
    	RESULT = res + IIF(repetend<>0, "[" + repetend + "]", "")
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    //   digits : 小数点以下の桁数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION fixed(num, digits = EMPTY)
    	num = VAL(num)		// 指数表記を整える
    	IFB POS("E-", num) THEN
    		DIM mantissa = BETWEENSTR(num,, "E")
    		DIM exponent = BETWEENSTR(num, "E")		
    		RESULT = "0." + strRepeat("0", VAL(ABS(exponent) - 1)) + REPLACE(mantissa, ".", "")
    	ELSEIF POS("E", num) THEN
    		RESULT = ROUND(num, -1 *digits)
    		mantissa = BETWEENSTR(num,, "E")
    		exponent = BETWEENSTR(num, "E")
    		RESULT = REPLACE(mantissa, ".", "") + strRepeat("0", VAL(exponent) - decimalDigits(mantissa))
    	ELSEIF LENGTH(BETWEENSTR(num, ".")) < digits THEN
    		DIM keta = digits - LENGTH(BETWEENSTR(num, "."))
    		RESULT = num + IIF(POS(".", num) OR keta = 0, "", ".") + strRepeat("0", keta)
    	ELSE
    		IF digits = EMPTY THEN digits = LENGTH(BETWEENSTR(num, "."))
    		RESULT = "" + roundOff(num, digits)
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 丸め処理を行う値 
    // 【戻り値】
    //   負の方向に丸めた値 
    //////////////////////////////////////////////////
    FUNCTION floor(num)
    	RESULT = INT(num) + IIF(num < 0 AND num <> INT(num), -1, 0)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 最大公約数を求める数値を格納した配列 
    // 【戻り値】
    //   最大公約数 
    //////////////////////////////////////////////////
    FUNCTION GCD(array[])
    	DIM c = LENGTH(array)
    	DIM rem = array[c-1] MOD array[c-2]
    	IFB rem = 0 THEN
    		IFB LENGTH(array) = 2 THEN
    			RESULT = array[c-2]
    			EXIT
    		ENDIF
    		RESIZE(array, c-2)
    		RESULT = GCD(array)
    		EXIT
    	ENDIF
    	array[c-1] = array[c-2]
    	array[c-2] = rem
    	RESULT = GCD(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 日付(”YYYYMMDD” or “YYYY/MM/DD” or “YYYY-MM-DD” or “YYYYMMDDHHNNSS” or “YYYY/MM/DD HH:NN:SS”) 
    //   m : 第一引数の指定日からプラスマイナスm月とする 
    // 【戻り値】
    //   dateからm月後の月末の日付 
    //////////////////////////////////////////////////
    FUNCTION getEndOfMonth(date, m = 0)
    	date = dateAdd("m", m + 1, date)
    	GETTIME(0, date)
    	GETTIME(-G_TIME_DD, date)
    	RESULT = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 日付文字列(”YYYYMMDD” or “YYYY/MM/DD” or “YYYY-MM-DD” or “YYYYMMDDHHNNSS” or “YYYY/MM/DD HH:NN:SS”)もしくはシリアル値 
    //   type : 取得する曜日番号の種類を示す0〜3または11〜17の値。1と17は日曜日を1、2と11は月曜日を1とカウントします。11以降はExcel2010で追加された値で、互換性を保つために重複した値があります。 
    // 【戻り値】
    //   typeで指定した種類によって以下の値を返します。 : (0 : 0(日曜)〜6(土曜)、1 : 1(日曜)~7(土曜)、2 : 1(月曜)~7(日曜)、3 : 0(月曜)〜6(日曜)、11 : 1(月曜)~7(日曜)、12 : 1(火曜)~7(月曜)、13 : 1(水曜)~7(火曜)、14 : 1(木曜)~7(水曜)、15 : 1(金曜)~7(木曜)、16 : 1(土曜)~7(金曜)、17 : 1(日曜)~7(土曜)) 
    //////////////////////////////////////////////////
    FUNCTION getWeekday(date, type = 1)
    	IF VARTYPE(date) <> 258 THEN date = text(date, "yyyy/mm/dd")
    	GETTIME(0, date)
    	DIM w = G_TIME_WW
    	SELECT TRUE
    		CASE type = 0
    			RESULT = w
    		CASE type = 1
    			RESULT = w + 1
    		CASE type = 2
    			RESULT = IIF(w=0, 7, w)
    		CASE type = 3
    			RESULT = (w+6) MOD 7
    		CASE type >= 11
    			RESULT = ((getWeekday(date, 2) + 17 - type) MOD 7) + 1
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : シリアル値もしくは時刻文字列 
    // 【戻り値】
    //   時刻から時間を表す0〜23の範囲の値 
    //////////////////////////////////////////////////
    FUNCTION Hour(serial)
    	IF VARTYPE(serial) = 258 THEN serial = timeValue(serial)
    	RESULT = INT(serial * 24) MOD 24
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   expr : 評価する式 
    //   truepart : 評価した式がTrueのときに返す値 
    //   falsepart : 評価した式がFalseのときに返す値 
    // 【戻り値】
    //   truepart : 評価した式がTrueのとき、falsepart : 評価した式がFalseのとき 
    //////////////////////////////////////////////////
    FUNCTION IIF(expr, truepart, falsepart)
    	IFB EVAL(expr) THEN
    		RESULT = truepart
    	ELSE
    		RESULT = falsepart
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION isArray(variable[])
    	RESULT = IIF(VARTYPE(variable) AND 8192, TRUE, FALSE)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 存在するかを調べる日付文字列。YYYYMMDD or YYYY/MM/DD or YYYY-MM-DDのいずれかの形式。 
    // 【戻り値】
    //   TRUE : 日付として認識できる、FALSE : 日付として認識できない 
    //////////////////////////////////////////////////
    FUNCTION isDate(date)
    	TRY
    		GETTIME(0, date)
    		RESULT = TRUE
    	EXCEPT
    		RESULT = FALSE
    	ENDTRY
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION isFloat(variable)
    	IFB VAL(variable) <> ERR_VALUE THEN
    		RESULT = IIF((VARTYPE(variable) = VAR_SINGLE OR VARTYPE(variable) = VAR_DOUBLE) AND INT(variable) <> variable, TRUE, FALSE)
    	ELSE
    		RESULT = FALSE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //    : TRUE : 与えられた変数が文字列型である、 
    //   FALSE : 与えられた変数が文字列型でない、 : 
    //////////////////////////////////////////////////
    FUNCTION isString(variable)
    	RESULT = IIF(VARTYPE(variable) = VAR_ASTR OR VARTYPE(variable) = VAR_USTR, TRUE, FALSE)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   text : JSONとして解析する文字列 
    //   value : JSON文字列に変換する値 
    //   reviver : 使用不可 
    //   replacer : 使用不可 
    //   space : 出力するJSON文字列に空白を挿入するための文字列もしくは数値 
    // 【戻り値】
    //    : Parse : JSON文字列をオブジェクトに変換、 
    //   Stringify : オブジェクトをJSON文字列に変換、 : 
    //////////////////////////////////////////////////
    MODULE JSON
    	DIM SC, CodeObject
    	PROCEDURE JSON
    		SC = CREATEOLEOBJ("ScriptControl")
    		WITH SC
    			.Language = "JScript"
    			.ExecuteStatement(json2)
    			.ExecuteStatement(statement)
    			CodeObject = .CodeObject
    		ENDWITH
    	FEND
    	FUNCTION Parse(text, reviver = NULL)
    		RESULT = CodeObject.JSON.parse(text, reviver)
    	FEND
    	FUNCTION Stringify(value, replacer = "", space = FALSE)
    		RESULT = CodeObject.JSON.stringify(value, NULL, replacer)
    		IF space THEN RESULT = REPLACE(RESULT, CHR(10), "<#CR>")
    	FEND
    ENDMODULE
    
    TEXTBLOCK statement
    Array.prototype.Item = function(i, value){
    	if(value === undefined) return this[i]; this[i] = value;
    }
    Array.prototype.item = Array.prototype.Item;
    ENDTEXTBLOCK
    
    TEXTBLOCK json2
    //  json2.js
    //  2023-05-10
    //  Public Domain.
    //  NO WARRANTY EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
    
    //  USE YOUR OWN COPY. IT IS EXTREMELY UNWISE TO LOAD CODE FROM SERVERS YOU DO
    //  NOT CONTROL.
    
    //  This file creates a global JSON object containing two methods: stringify
    //  and parse. This file provides the ES5 JSON capability to ES3 systems.
    //  If a project might run on IE8 or earlier, then this file should be included.
    //  This file does nothing on ES5 systems.
    
    //      JSON.stringify(value, replacer, space)
    //          value       any JavaScript value, usually an object or array.
    //          replacer    an optional parameter that determines how object
    //                      values are stringified for objects. It can be a
    //                      function or an array of strings.
    //          space       an optional parameter that specifies the indentation
    //                      of nested structures. If it is omitted, the text will
    //                      be packed without extra whitespace. If it is a number,
    //                      it will specify the number of spaces to indent at each
    //                      level. If it is a string (such as "\t" or " "),
    //                      it contains the characters used to indent at each level.
    //          This method produces a JSON text from a JavaScript value.
    //          When an object value is found, if the object contains a toJSON
    //          method, its toJSON method will be called and the result will be
    //          stringified. A toJSON method does not serialize: it returns the
    //          value represented by the name/value pair that should be serialized,
    //          or undefined if nothing should be serialized. The toJSON method
    //          will be passed the key associated with the value, and this will be
    //          bound to the value.
    
    //          For example, this would serialize Dates as ISO strings.
    
    //              Date.prototype.toJSON = function (key) {
    //                  function f(n) {
    //                      // Format integers to have at least two digits.
    //                      return (n < 10)
    //                          ? "0" + n
    //                          : n;
    //                  }
    //                  return this.getUTCFullYear()   + "-" +
    //                       f(this.getUTCMonth() + 1) + "-" +
    //                       f(this.getUTCDate())      + "T" +
    //                       f(this.getUTCHours())     + ":" +
    //                       f(this.getUTCMinutes())   + ":" +
    //                       f(this.getUTCSeconds())   + "Z";
    //              };
    
    //          You can provide an optional replacer method. It will be passed the
    //          key and value of each member, with this bound to the containing
    //          object. The value that is returned from your method will be
    //          serialized. If your method returns undefined, then the member will
    //          be excluded from the serialization.
    
    //          If the replacer parameter is an array of strings, then it will be
    //          used to select the members to be serialized. It filters the results
    //          such that only members with keys listed in the replacer array are
    //          stringified.
    
    //          Values that do not have JSON representations, such as undefined or
    //          functions, will not be serialized. Such values in objects will be
    //          dropped; in arrays they will be replaced with null. You can use
    //          a replacer function to replace those with JSON values.
    
    //          JSON.stringify(undefined) returns undefined.
    
    //          The optional space parameter produces a stringification of the
    //          value that is filled with line breaks and indentation to make it
    //          easier to read.
    
    //          If the space parameter is a non-empty string, then that string will
    //          be used for indentation. If the space parameter is a number, then
    //          the indentation will be that many spaces.
    
    //          Example:
    
    //          text = JSON.stringify(["e", {pluribus: "unum"}]);
    //          // text is '["e",{"pluribus":"unum"}]'
    
    //          text = JSON.stringify(["e", {pluribus: "unum"}], null, "\t");
    //          // text is '[\n\t"e",\n\t{\n\t\t"pluribus": "unum"\n\t}\n]'
    
    //          text = JSON.stringify([new Date()], function (key, value) {
    //              return this[key] instanceof Date
    //                  ? "Date(" + this[key] + ")"
    //                  : value;
    //          });
    //          // text is '["Date(---current time---)"]'
    
    //      JSON.parse(text, reviver)
    //          This method parses a JSON text to produce an object or array.
    //          It can throw a SyntaxError exception.
    
    //          The optional reviver parameter is a function that can filter and
    //          transform the results. It receives each of the keys and values,
    //          and its return value is used instead of the original value.
    //          If it returns what it received, then the structure is not modified.
    //          If it returns undefined then the member is deleted.
    
    //          Example:
    
    //          // Parse the text. Values that look like ISO date strings will
    //          // be converted to Date objects.
    
    //          myData = JSON.parse(text, function (key, value) {
    //              var a;
    //              if (typeof value === "string") {
    //                  a =
    //   /^(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}(?:\.\d*)?)Z$/.exec(value);
    //                  if (a) {
    //                      return new Date(Date.UTC(
    //                         +a[1], +a[2] - 1, +a[3], +a[4], +a[5], +a[6]
    //                      ));
    //                  }
    //                  return value;
    //              }
    //          });
    
    //          myData = JSON.parse(
    //              "[\"Date(09/09/2001)\"]",
    //              function (key, value) {
    //                  var d;
    //                  if (
    //                      typeof value === "string"
    //                      && value.slice(0, 5) === "Date("
    //                      && value.slice(-1) === ")"
    //                  ) {
    //                      d = new Date(value.slice(5, -1));
    //                      if (d) {
    //                          return d;
    //                      }
    //                  }
    //                  return value;
    //              }
    //          );
    
    //  This is a reference implementation. You are free to copy, modify, or
    //  redistribute.
    
    /*jslint
        eval, for, this
    */
    
    /*property
        JSON, apply, call, charCodeAt, getUTCDate, getUTCFullYear, getUTCHours,
        getUTCMinutes, getUTCMonth, getUTCSeconds, hasOwnProperty, join,
        lastIndex, length, parse, prototype, push, replace, slice, stringify,
        test, toJSON, toString, valueOf
    */
    
    
    // Create a JSON object only if one does not already exist. We create the
    // methods in a closure to avoid creating global variables.
    
    if (typeof JSON !== "object") {
        JSON = {};
    }
    
    (function () {
        "use strict";
    
        var rx_one = /^[\],:{}\s]*$/;
        var rx_two = /\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;
        var rx_three = /"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;
        var rx_four = /(?:^|:|,)(?:\s*\[)+/g;
        var rx_escapable = /[\\"\u0000-\u001f\u007f-\u009f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g;
        var rx_dangerous = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g;
    
        function f(n) {
            // Format integers to have at least two digits.
            return (n < 10)
                ? "0" + n
                : n;
        }
    
        function this_value() {
            return this.valueOf();
        }
    
        if (typeof Date.prototype.toJSON !== "function") {
    
            Date.prototype.toJSON = function () {
    
                return isFinite(this.valueOf())
                    ? (
                        this.getUTCFullYear()
                        + "-"
                        + f(this.getUTCMonth() + 1)
                        + "-"
                        + f(this.getUTCDate())
                        + "T"
                        + f(this.getUTCHours())
                        + ":"
                        + f(this.getUTCMinutes())
                        + ":"
                        + f(this.getUTCSeconds())
                        + "Z"
                    )
                    : null;
            };
    
            Boolean.prototype.toJSON = this_value;
            Number.prototype.toJSON = this_value;
            String.prototype.toJSON = this_value;
        }
    
        var gap;
        var indent;
        var meta;
        var rep;
    
    
        function quote(string) {
    
    // If the string contains no control characters, no quote characters, and no
    // backslash characters, then we can safely slap some quotes around it.
    // Otherwise we must also replace the offending characters with safe escape
    // sequences.
    
            rx_escapable.lastIndex = 0;
            return rx_escapable.test(string)
                ? "\"" + string.replace(rx_escapable, function (a) {
                    var c = meta[a];
                    return typeof c === "string"
                        ? c
                        : "\\u" + ("0000" + a.charCodeAt(0).toString(16)).slice(-4);
                }) + "\""
                : "\"" + string + "\"";
        }
    
    
        function str(key, holder) {
    
    // Produce a string from holder[key].
    
            var i;          // The loop counter.
            var k;          // The member key.
            var v;          // The member value.
            var length;
            var mind = gap;
            var partial;
            var value = holder[key];
    
    // If the value has a toJSON method, call it to obtain a replacement value.
    
            if (
                value
                && typeof value === "object"
                && typeof value.toJSON === "function"
            ) {
                value = value.toJSON(key);
            }
    
    // If we were called with a replacer function, then call the replacer to
    // obtain a replacement value.
    
            if (typeof rep === "function") {
                value = rep.call(holder, key, value);
            }
    
    // What happens next depends on the value's type.
    
            switch (typeof value) {
            case "string":
                return quote(value);
    
            case "number":
    
    // JSON numbers must be finite. Encode non-finite numbers as null.
    
                return (isFinite(value))
                    ? String(value)
                    : "null";
    
            case "boolean":
            case "null":
    
    // If the value is a boolean or null, convert it to a string. Note:
    // typeof null does not produce "null". The case is included here in
    // the remote chance that this gets fixed someday.
    
                return String(value);
    
    // If the type is "object", we might be dealing with an object or an array or
    // null.
    
            case "object":
    
    // Due to a specification blunder in ECMAScript, typeof null is "object",
    // so watch out for that case.
    
                if (!value) {
                    return "null";
                }
    
    // Make an array to hold the partial results of stringifying this object value.
    
                gap += indent;
                partial = [];
    
    // Is the value an array?
    
                if (Object.prototype.toString.apply(value) === "[object Array]") {
    
    // The value is an array. Stringify every element. Use null as a placeholder
    // for non-JSON values.
    
                    length = value.length;
                    for (i = 0; i < length; i += 1) {
                        partial[i] = str(i, value) || "null";
                    }
    
    // Join all of the elements together, separated with commas, and wrap them in
    // brackets.
    
                    v = partial.length === 0
                        ? "[]"
                        : gap
                            ? (
                                "[\n"
                                + gap
                                + partial.join(",\n" + gap)
                                + "\n"
                                + mind
                                + "]"
                            )
                            : "[" + partial.join(",") + "]";
                    gap = mind;
                    return v;
                }
    
    // If the replacer is an array, use it to select the members to be stringified.
    
                if (rep && typeof rep === "object") {
                    length = rep.length;
                    for (i = 0; i < length; i += 1) {
                        if (typeof rep[i] === "string") {
                            k = rep[i];
                            v = str(k, value);
                            if (v) {
                                partial.push(quote(k) + (
                                    (gap)
                                        ? ": "
                                        : ":"
                                ) + v);
                            }
                        }
                    }
                } else {
    
    // Otherwise, iterate through all of the keys in the object.
    
                    for (k in value) {
                        if (Object.prototype.hasOwnProperty.call(value, k)) {
                            v = str(k, value);
                            if (v) {
                                partial.push(quote(k) + (
                                    (gap)
                                        ? ": "
                                        : ":"
                                ) + v);
                            }
                        }
                    }
                }
    
    // Join all of the member texts together, separated with commas,
    // and wrap them in braces.
    
                v = partial.length === 0
                    ? "{}"
                    : gap
                        ? "{\n" + gap + partial.join(",\n" + gap) + "\n" + mind + "}"
                        : "{" + partial.join(",") + "}";
                gap = mind;
                return v;
            }
        }
    
    // If the JSON object does not yet have a stringify method, give it one.
    
        if (typeof JSON.stringify !== "function") {
            meta = {    // table of character substitutions
                "\b": "\\b",
                "\t": "\\t",
                "\n": "\\n",
                "\f": "\\f",
                "\r": "\\r",
                "\"": "\\\"",
                "\\": "\\\\"
            };
            JSON.stringify = function (value, replacer, space) {
    
    // The stringify method takes a value and an optional replacer, and an optional
    // space parameter, and returns a JSON text. The replacer can be a function
    // that can replace values, or an array of strings that will select the keys.
    // A default replacer method can be provided. Use of the space parameter can
    // produce text that is more easily readable.
    
                var i;
                gap = "";
                indent = "";
    
    // If the space parameter is a number, make an indent string containing that
    // many spaces.
    
                if (typeof space === "number") {
                    for (i = 0; i < space; i += 1) {
                        indent += " ";
                    }
    
    // If the space parameter is a string, it will be used as the indent string.
    
                } else if (typeof space === "string") {
                    indent = space;
                }
    
    // If there is a replacer, it must be a function or an array.
    // Otherwise, throw an error.
    
                rep = replacer;
                if (replacer && typeof replacer !== "function" && (
                    typeof replacer !== "object"
                    || typeof replacer.length !== "number"
                )) {
                    throw new Error("JSON.stringify");
                }
    
    // Make a fake root object containing our value under the key of "".
    // Return the result of stringifying the value.
    
                return str("", {"": value});
            };
        }
    
    
    // If the JSON object does not yet have a parse method, give it one.
    
        if (typeof JSON.parse !== "function") {
            JSON.parse = function (text, reviver) {
    
    // The parse method takes a text and an optional reviver function, and returns
    // a JavaScript value if the text is a valid JSON text.
    
                var j;
    
                function walk(holder, key) {
    
    // The walk method is used to recursively walk the resulting structure so
    // that modifications can be made.
    
                    var k;
                    var v;
                    var value = holder[key];
                    if (value && typeof value === "object") {
                        for (k in value) {
                            if (Object.prototype.hasOwnProperty.call(value, k)) {
                                v = walk(value, k);
                                if (v !== undefined) {
                                    value[k] = v;
                                } else {
                                    delete value[k];
                                }
                            }
                        }
                    }
                    return reviver.call(holder, key, value);
                }
    
    
    // Parsing happens in four stages. In the first stage, we replace certain
    // Unicode characters with escape sequences. JavaScript handles many characters
    // incorrectly, either silently deleting them, or treating them as line endings.
    
                text = String(text);
                rx_dangerous.lastIndex = 0;
                if (rx_dangerous.test(text)) {
                    text = text.replace(rx_dangerous, function (a) {
                        return (
                            "\\u"
                            + ("0000" + a.charCodeAt(0).toString(16)).slice(-4)
                        );
                    });
                }
    
    // In the second stage, we run the text against regular expressions that look
    // for non-JSON patterns. We are especially concerned with "()" and "new"
    // because they can cause invocation, and "=" because it can cause mutation.
    // But just to be safe, we want to reject all unexpected forms.
    
    // We split the second stage into 4 regexp operations in order to work around
    // crippling inefficiencies in IE's and Safari's regexp engines. First we
    // replace the JSON backslash pairs with "@" (a non-JSON character). Second, we
    // replace all simple value tokens with "]" characters. Third, we delete all
    // open brackets that follow a colon or comma or that begin the text. Finally,
    // we look to see that the remaining characters are only whitespace or "]" or
    // "," or ":" or "{" or "}". If that is so, then the text is safe for eval.
    
                if (
                    rx_one.test(
                        text
                            .replace(rx_two, "@")
                            .replace(rx_three, "]")
                            .replace(rx_four, "")
                    )
                ) {
    
    // In the third stage we use the eval function to compile the text into a
    // JavaScript structure. The "{" operator is subject to a syntactic ambiguity
    // in JavaScript: it can begin a block or an object literal. We wrap the text
    // in parens to eliminate the ambiguity.
    
                    j = eval("(" + text + ")");
    
    // In the optional fourth stage, we recursively walk the new structure, passing
    // each name/value pair to a reviver function for possible transformation.
    
                    return (typeof reviver === "function")
                        ? walk({"": j}, "")
                        : j;
                }
    
    // If the text is not JSON parseable, then a SyntaxError is thrown.
    
                throw new SyntaxError("JSON.parse");
            };
        }
    }());
    ENDTEXTBLOCK
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    //   rank : 抽出する値の大きい方から数えた順位 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION large(array[], rank)
    	IFB rank >= 1 AND rank <= LENGTH(array) THEN
    		shellSort(array)
    		RESULT = array[LENGTH(array) - rank]
    	ELSE
    		RESULT = ERR_VALUE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 正規表現による検索の対象となる文字列 
    //   Pattern : 正規表現で使用するパターンを設定 
    //   IgnoreCase : 大文字・小文字を区別しない場合はTrue、区別する場合はFalse 
    //   Global : 文字列全体を検索する場合はTrue、しない場合はFalse 
    // 【戻り値】
    //   正規表現で検索した結果をMatchesコレクションとして返します。 
    //////////////////////////////////////////////////
    FUNCTION reExecute(str, Pattern, IgnoreCase = TRUE, Global = TRUE)
    	DIM re = CREATEOLEOBJ("VBScript.RegExp")
    	re.Pattern = Pattern
    	re.IgnoreCase = IgnoreCase
    	re.Global = Global
    	RESULT = re.Execute(str)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 正規表現による検索の対象となる文字列 
    //   Pattern : 正規表現で使用するパターンを設定 
    //   IgnoreCase : 大文字・小文字を区別しない場合はTrue、区別する場合はFalse 
    //   Global : 文字列全体を検索する場合はTrue、しない場合はFalse 
    // 【戻り値】
    //   正規表現にマッチするかどうかを示すブール値 
    //////////////////////////////////////////////////
    FUNCTION reTest(str, Pattern, IgnoreCase = TRUE, Global = TRUE)
    	DIM re = CREATEOLEOBJ("VBScript.RegExp")
    	re.Pattern = Pattern
    	re.IgnoreCase = IgnoreCase
    	re.Global = Global
    	RESULT = re.Test(str)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    //   digit : 四捨五入する位置(マイナスで整数方向) 
    // 【戻り値】
    //   四捨五入した値 
    //////////////////////////////////////////////////
    FUNCTION roundOff(num, digit = 0)
    	DIM sign = sign(num)
    	num = ABS(num)
    	DIM offset = POWER(10, digit)
    	DIM n = num * offset - INT(num * offset)
    	RESULT = sign * IIF(n >= 0.5, CEIL(num * offset) / offset, INT(num * offset) / offset)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : 時間を表すシリアル値を指定 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION Second(serial)
    	RESULT = REPLACE(FORMAT(INT(serial * 86400) MOD 60, 2), " ", "0")
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : ソートする数値を格納した配列。参照引数。 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE shellSort(Var array[])
    	DIM i, j, inc, temp
    	
    	inc = 4
    	WHILE INT(inc) > 0
    		FOR i = 0 TO UBound(array)
    			j = i
    			temp = array[i]
    			WHILE j >= inc AND array[zcut(j-inc)] > temp
    				array[j] = array[j-inc]
    				j = j - inc
    			WEND
    			array[j] = temp
    		NEXT
    		IFB inc / 2 <> 0 THEN
    			inc = inc / 2
    		ELSEIF inc = 1 THEN
    			inc = 0
    		ELSE
    			inc = 1
    		ENDIF
    	WEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 符号を求める数値 
    // 【戻り値】
    //   1 : 正の数、0 : ゼロ、-1 : 負の数、ERR_VALUE : それ以外 
    //////////////////////////////////////////////////
    FUNCTION sign(num)
    	SELECT TRUE
    		CASE !CHKNUM(num)
    			RESULT = ERR_VALUE
    		CASE num > 0
    			RESULT = 1
    		CASE num = 0
    			RESULT = 0
    		CASE num < 0
    			RESULT = -1
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    //   rank : 抽出する値の小さい方から数えた順位 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION small(array[], rank)
    	IFB rank >= 1 AND rank <= LENGTH(array) THEN
    		shellSort(array)
    		RESULT = array[rank-1]
    	ELSE
    		RESULT = ERR_VALUE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   input : 入力文字列 
    //   length : 埋めたあとの長さ 
    //   str : 埋める文字 
    //   type : 埋める方向 
    // 【戻り値】
    //   指定文字で埋めた文字列 
    //////////////////////////////////////////////////
    FUNCTION strPad(input, length, str = " ", type = RIGHT)
    	DIM s = ""
    	SELECT type
    		CASE LEFT
    			FOR i = 1 TO CEIL((length - LENGTH(input)) / LENGTH(str))
    				s = s + str
    			NEXT
    			input = COPY(s, 1, length - LENGTH(input)) + input
    		CASE RIGHT
    			FOR i = 1 TO CEIL((length - LENGTH(input)) / LENGTH(str))
    				s = s + str
    			NEXT
    			input = input + COPY(s, 1, length - LENGTH(input))
    	SELEND
    	RESULT = input
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   inputs : 繰り返す文字列 
    //   multiplier : inputsを繰り返す回数 
    // 【戻り値】
    //   inputsをmultiplier回を繰り返した文字列を返します 
    //////////////////////////////////////////////////
    FUNCTION strRepeat(inputs, multiplier)
    	DIM res = ""
    	FOR n = 1 TO multiplier
    		res = res + inputs
    	NEXT
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   a : bと交換する値。参照引数。 
    //   b : aと交換する値。参照引数。 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE swap(Var a, Var b)
    	DIM tmp = a
    	a = b
    	b = tmp
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : シリアル値 
    //   format : フォーマット 
    // 【戻り値】
    //   数値を表示書式に基づいて変換した文字列 
    //////////////////////////////////////////////////
    FUNCTION text(serial, format, hour12 = FALSE)
    	HASHTBL startDate
    	startDate["明治"] = "1868/01/25"
    	startDate["大正"] = "1912/07/30"
    	startDate["昭和"] = "1926/12/25"
    	startDate["平成"] = "1989/01/08"
    	startDate["令和"] = "2019/05/01"
    	
    	DIM baseDate = "1899/12/30"
    	serial = VAL(serial)
    	SELECT TRUE
    		CASE reTest(format, "\[h+\]")
    			Matches = reExecute(format, "\[(h+)\]")
    			DIM hour = iif(hour12, Hour(serial) MOD 12, Hour(serial))
    			RESULT = text(hour, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE reTest(format, "^h+$")
    			Matches = reExecute(format, "^(h+)$")
    			hour = iif(hour12, Hour(serial) MOD 12, Hour(serial))
    			RESULT = text(hour MOD 24, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE reTest(format, "\[m+\]")
    			Matches = reExecute(format, "\[(m+)\]")
    			RESULT = text(serial * 1440, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE format = "m"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_MM, "0")
    		CASE format = "mm"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_MM2
    		CASE format = "n"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_NN
    		CASE format = "nn"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_NN2
    		CASE format = "s"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_SS, "0")
    		CASE format = "ss"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_SS2
    		CASE format = "yyyy"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_YY4
    		CASE format = "yy"
    			GETTIME(serial, baseDate)
    			RESULT = COPY(G_TIME_YY4, 3, 2)
    		CASE format = "e"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 2018
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1988
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1925
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1911
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1867
    			SELEND
    		CASE format = "ee"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 2018, "00")
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1988, "00")
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1925, "00")
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1911, "00")
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1867, "00")
    			SELEND
    		CASE format = "g"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "R"
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "H"
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "S"
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "T"
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "M"
    			SELEND
    		CASE format = "gg"
    			RESULT = COPY(text(serial, "ggg"), 1, 1)
    		CASE format = "ggg"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "令和"
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "平成"
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "昭和"
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "大正"
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "明治"
    			SELEND
    		CASE format = "mmmmm"
    			RESULT = COPY(text(serial, "mmmm"), 1, 1)
    		CASE format = "mmmm"
    			DIM month[] = "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"
    			RESULT = month[text(serial, "m") - 1]
    		CASE format = "mmm"
    			RESULT = COPY(text(serial, "mmmm"), 1, 3)
    		CASE format = "dd"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_DD2, "00")
    		CASE format = "d"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_DD, "0")
    		CASE reTest(format, "^[ad]{3,4}$")
    			Matches = reExecute(format, "([ad]{3,4})")
    			GETTIME(serial, baseDate)
    			DIM aaa[] = "日", "月", "火", "水", "木", "金", "土"
    			DIM aaaa[] = "日曜日", "月曜日", "火曜日", "水曜日", "木曜日", "金曜日", "土曜日"
    			DIM ddd[] = "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    			DIM dddd[] = "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday";
    			RESULT = EVAL(Matches.Item(0).SubMatches(0) + "[" + getWeekday(G_TIME_WW, 1) + "]")
    		CASE reTest(format, "(0+\.?0+)?%")
    			Matches = reExecute(format, "(0+\.?0+)?%")
    			RESULT = text(serial * 100, Matches.Item(0).SubMatches(0)) + "%"
    		CASE reTest(format, "^\[DBNum\d{1,4}\](.*?)$")
    			Matches = reExecute(format, "^\[DBNum(\d{1,4})\](.*?)$")
    			DIM value = VAL(Matches.Item(0).SubMatches(0))
    			DIM sss = text(serial, Matches.Item(0).SubMatches(1))
    			Matches = reExecute(sss, "(\D+)?(\d+)(\D+)?")
    			DIM res = ""
    			FOR m = 0 TO Matches.Count - 1
    				serial = Matches.Item(m).SubMatches(1)
    				SELECT value
    					CASE 1, 2
    						DIM n[][9] = "〇", "一", "二", "三", "四", "五", "六", "七", "八", "九", + _
    										"", "壱", "弐", "参", "四", "伍", "六", "七", "八", "九"
    						DIM a[][3] = "", "十", "百", "千", + _
    										"", "拾", "百", "阡"
    						DIM b[][3] = "", "万", "億", "兆", + _
    										"", "萬", "億", "兆"
    						DIM r = ""
    						DIM j = 0
    						type = value - 1
    						REPEAT
    							DIM str = ""
    							DIM n4 = serial MOD 10000
    							FOR i = LENGTH(n4) TO 1 STEP -1
    								s = COPY(n4, i, 1)
    								IFB s = 1 AND a[type][LENGTH(n4)-i] <> "" THEN
    									str = IIF(s, a[type][LENGTH(n4)-i], "") + str
    								ELSE	
    									str = n[type][s] + IIF(s, a[type][LENGTH(n4)-i], "") + str
    								ENDIF
    							NEXT
    							IF str <> "" THEN r = str + b[type][j] + r
    							j = j + 1
    							serial = INT(serial / 10000)
    						UNTIL serial = 0
    						res = res + Matches.Item(m).SubMatches(0) + r + Matches.Item(m).SubMatches(2)
    					CASE 3
    						res = res + Matches.Item(m).SubMatches(0) + STRCONV(serial, SC_FULLWIDTH) + Matches.Item(m).SubMatches(2)
    					CASE 4
    						res = res + Matches.Item(m).SubMatches(0) + STRCONV(serial, SC_HALFWIDTH) + Matches.Item(m).SubMatches(2)
    				SELEND
    			NEXT
    			RESULT = res
    		CASE reTest(format, "^(.*?)(AM\/PM|am\/pm|A\/P|a\/p)(.*?)$")
    			Matches = reExecute(format, "^(.*?)(AM\/PM|am\/pm|A\/P|a\/p)(.*?)$")
    			DIM array = SPLIT(Matches.Item(0).SubMatches(1), "/")
    			ampm = array[IIF(serial - INT(serial) >= 0.5, 1, 0)]
    			hour12 = TRUE
    			res = ""
    			WITH Matches.Item(0)
    				res = text(serial, .SubMatches(0), hour12) + ampm + text(serial, .SubMatches(2), hour12)
    			ENDWITH
    			RESULT = res
    		CASE reTest(format, "([^ymdagehns]{0,})?(([ymdagehns])\3{0,})([^ymdagehns]+)?")
    			Matches = reExecute(format, "([^ymdagehns]{0,})?(([ymdagehns])\3{0,})([^ymdagehns]+)?")
    			FOR n = 0 TO Matches.Count - 1
    				IF n = 0 THEN res = Matches.Item(n).SubMatches(0)
    			NEXT
    			FOR n = 0 TO Matches.Count - 1
    				WITH Matches.Item(n)
    					res = res + text(serial, .SubMatches(1), hour12) + .SubMatches(3)
    				ENDWITH
    			NEXT
    			RESULT = res
    		CASE format = "0/0"
    			DIM separator = POS(".", serial)
    			DIM g = 0
    			IFB separator <> 0 THEN
    				DIM keta = LENGTH(serial)
    				DIM shift = POWER(10, keta - separator)
    				IFB shift >= POWER(10, 15) THEN
    					DIM position = 0
    					FOR i = 0 TO 14
    						IFB serial * POWER(10, i) - serial >= 1 THEN
    							position = i
    							BREAK
    						ENDIF
    					NEXT
    					tmp = serial * POWER(10, position)
    					FOR i = 1 TO 15
    						r = (tmp * POWER(10, i)) / serial - (tmp / serial)
    						a1 = tmp * POWER(10, i) - tmp
    						IF a1 = INT(a1) THEN BREAK 
    					NEXT
    					DIM frac[] = a1, r
    					g = GCD(frac)
    					RESULT = (a1/g) + "/" + (r/g)
    				ELSE
    					DIM molecule = serial * shift	// 分子
    					DIM denominator = shift		// 分母
    					DIM nums[] = molecule, denominator
    					g = GCD(nums)
    					molecule = molecule / g
    					denominator = denominator / g
    					RESULT = molecule + "/" + denominator
    				ENDIF
    			ELSE
    				RESULT = serial + "/1"
    			ENDIF
    		CASE reTest(format, "(0+)\.?(0+)?") AND UBound(SPLIT(format, ".")) <= 1 
    			Matches = reExecute(format, "(0+)\.?(0+)?")
    			len1 = LENGTH(Matches.Item(0).SubMatches(0))
    			len2 = LENGTH(Matches.Item(0).SubMatches(1))
    			DIM arr[] = LENGTH(INT(serial)), len1
    			IFB POS(".", format) THEN
    				RESULT = REPLACE(FORMAT(serial, CALCARRAY(arr, CALC_MAX) + len2 + 1, len2), " ", "0")
    			ELSE
    				RESULT = REPLACE(FORMAT(serial, CALCARRAY(arr, CALC_MAX)), " ", "0")
    			ENDIF
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 時刻文字列。hh:nn:ss AM/PM、hh:nn AM/PM、hh AM/PM、hh:nn:ss、hh:nn、hh時nn分ss秒、hh時nn分のいずれかの形式を指定。 
    // 【戻り値】
    //   シリアル値 (例)0…00:00:00、0.5…12:00:00、0.999988425925926…23:59:59 
    //////////////////////////////////////////////////
    FUNCTION timeValue(str)
    	DIM serial = 0
    	DIM Matches
    	DIM pattern = "(\d+)"
    	DIM hh = "(0?[0-9]|1[0-2])"
    	DIM ampm = "([AP]M|[ap]m)"
    	SELECT TRUE
    		CASE reTest(str, "\b" + hh + ":" + pattern + ":" + pattern + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + ":" + pattern + ":" + pattern + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = timeValue(.SubMatches(0) + " " + .SubMatches(3)) + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + hh + ":" + pattern + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + ":" + pattern + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = timeValue(.SubMatches(0) + " " + .SubMatches(2)) + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		CASE reTest(str, "\b" + hh + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0) MOD 12) + IIF(reTest(.SubMatches(1), "AM|am"), 0, 12)
    				serial = serial / 24
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + ":" + pattern + ":" + pattern + "\b")
    			Matches = reExecute(str, "\b" + pattern + ":" + pattern + ":" + pattern + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + ":" + pattern + "\b")
    			Matches = reExecute(str, "\b" + pattern + ":" + pattern + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + "時" + pattern + "分" + pattern + "秒")
    			Matches = reExecute(str, "\b" + pattern + "時" + pattern + "分" + pattern + "秒")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + "時" + pattern + "分")
    			Matches = reExecute(str, "\b" + pattern + "時" + pattern + "分")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		DEFAULT
    			serial = ERR_VALUE
    	SELEND
    	RESULT = serial - INT(serial)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arrayname : 上限値を求める配列の名前 
    //   dimension : 返す次元を示す整数 
    // 【戻り値】
    //   配列の上限値 
    //////////////////////////////////////////////////
    FUNCTION UBound(arrayname[], dimension = 1)
    	RESULT = EVAL("RESIZE(arrayname" + strRepeat("[0]", dimension - 1) + ")")
    FEND
  3. 見つかった画像の位置をマウスカーソルで示す。

    • Main
    • FUNCTIONS
    UWSC
    DIM path = "D:\Desktop\quick.bmp"
    DIM arr = getBitmap(path)
    DIM num = CHKIMG(path, -1,,,,, -1)
    
    FOR n = 0 TO num - 1
    	PRINT ALL_IMG_X[n] + ", " + ALL_IMG_Y[n]
    	DIM a = ALL_IMG_X[n] + arr[1] / 2
    	DIM b = ALL_IMG_Y[n] + arr[2] / 2
    	DIM r = 5
    	
    	FOR theta = 0 TO 360 STEP 10
    		DIM x = a + r * COS(degToRad(theta))
    		DIM y = b + r * SIN(degToRad(theta))
    		MMV(x, y)
    		SLEEP(0.001)
    	NEXT
    NEXT
    UWSC
    //////////////////////////////////////////////////
    // 【引数】
    //   arr : 追加される配列(参照引数) 
    //   tmp : 追加する配列 
    // 【戻り値】
    //   追加した後の配列の要素数 
    //////////////////////////////////////////////////
    FUNCTION arrayMerge(Var arr[], tmp[])
    	FOR n = 0 TO UBound(tmp)
    		arrayPush(arr, tmp[n])
    	NEXT
    	RESULT = UBound(arr)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列。参照引数。 
    // 【戻り値】
    //   引数に指定した配列の最後の要素 
    //////////////////////////////////////////////////
    FUNCTION arrayPop(Var array[])
    	DIM n = UBound(array)
    	DIM res = array[n]
    	RESIZE(array, n-1)
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 要素を追加する配列(参照引数) 
    //   values : 追加する要素をvalue1から指定 
    // 【戻り値】
    //   処理後の配列の要素の数 
    //////////////////////////////////////////////////
    FUNCTION arrayPush(var array[], value1 = EMPTY, value2 = EMPTY, value3 = EMPTY, value4 = EMPTY, value5 = EMPTY, value6 = EMPTY, value7 = EMPTY, value8 = EMPTY, value9 = EMPTY, value10 = EMPTY, value11 = EMPTY, value12 = EMPTY, value13 = EMPTY, value14 = EMPTY, value15 = EMPTY, value16 = EMPTY)
        DIM i = 1
        WHILE EVAL("value" + i) <> EMPTY
    	  DIM res = RESIZE(array, UBound(array) + 1)
    	  array[res] = EVAL("value" + i)
    	  i = i + 1
    	WEND
    	RESULT = LENGTH(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 逆順にする配列 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE arrayReverse(Var array[])
    	DIM cnt = LENGTH(array)
    	FOR i = 0 TO INT(cnt / 2) - 1
    		swap(array[i], array[cnt-(i+1)])
    	NEXT
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   needle : 検索する値 
    //   haystack : 配列 
    // 【戻り値】
    //   needleが見つかった場合に配列のキー 
    //////////////////////////////////////////////////
    FUNCTION arraySearch(needle, haystack[])
    	DIM i = 0
    	FOR item IN haystack
    		IFB item = needle THEN
    			RESULT = i
    			EXIT
    		ENDIF
    		i = i + 1
    	NEXT
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    // 【戻り値】
    //   arrayの最初の値。配列arrayは、要素一つ分だけ短くなり、全ての要素は前にずれます。 
    //////////////////////////////////////////////////
    FUNCTION arrayShift(Var array[])
    	DIM res = array[0]
    	SHIFTARRAY(array, -1)
    	RESIZE(array, UBound(array) - 1)
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 要素を加えられる配列 
    //   values : 加える値をvalue1から順に指定 
    // 【戻り値】
    //   処理後の配列の要素の数 
    //////////////////////////////////////////////////
    FUNCTION arrayUnshift(var array[], value1 = EMPTY, value2 = EMPTY, value3 = EMPTY, value4 = EMPTY, value5 = EMPTY, value6 = EMPTY, value7 = EMPTY, value8 = EMPTY, value9 = EMPTY, value10 = EMPTY, value11 = EMPTY, value12 = EMPTY, value13 = EMPTY, value14 = EMPTY, value15 = EMPTY, value16 = EMPTY)
    	DIM tmp[-1]
    	DIM i = 1
    	WHILE EVAL("value" + i) <> EMPTY
    		arrayPush(tmp, EVAL("value" + i))
    		i = i + 1
    	WEND
    	arrayMerge(tmp, array)
    	RESIZE(array, UBound(tmp))
    	SETCLEAR(array, EMPTY)
    	FOR i = 0 TO UBound(tmp)
    		array[i] = tmp[i]
    	NEXT
    	RESULT = LENGTH(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   bin : 2進数 
    //   signFlg : 符号付きならばTrue 
    // 【戻り値】
    //   10進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION binToDec(bin, signFlg = TRUE)
    	DIM dec = 0
    	DIM decimalFlg = IIF(POS(".", bin), TRUE, FALSE)
    	IFB COPY(bin, 1, 1) = "1" AND signFlg THEN
    		DIM msb = IIF(decimalFlg, POS(".", bin) - 1, LENGTH(bin))
    		DIM lsb = IIF(decimalFlg, POS(".", bin) - LENGTH(bin), 0)
    		DIM dec2 = POWER(2, msb) - 1
    		FOR i = -1 TO lsb STEP -1
    			dec2 = dec2 + POWER(2, i)
    		NEXT
    		DIM a = binToDec(bin, FALSE)
    		DIM b = dec2
    		dec = -1 * (bitXor(a, b) + POWER(2, lsb))
    	ELSE
    		IFB decimalFlg THEN
    			DIM integer = COPY(bin, 1, POS(".", bin) - 1)
    			DIM decimal = COPY(bin, POS(".", bin) + 1)
    			FOR i = 1 TO LENGTH(decimal)
    				dec = dec + COPY(decimal, i, 1) * POWER(2, -1 * i)
    			NEXT
    		ELSE
    			integer = bin
    		ENDIF
    		FOR i = 1 TO LENGTH(integer)
    			dec = dec + COPY(integer, i, 1) * POWER(2, LENGTH(integer) - i)
    		NEXT
    	ENDIF
    	RESULT = dec
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   bin : 2進数 
    // 【戻り値】
    //   16進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION binToHex(bin)
    	HASHTBL bh
    	bh["0000"] = "0";	bh["0001"] = "1";	bh["0010"] = "2";	bh["0011"] = "3";
    	bh["0100"] = "4";	bh["0101"] = "5";	bh["0110"] = "6";	bh["0111"] = "7";
    	bh["1000"] = "8";	bh["1001"] = "9";	bh["1010"] = "A";	bh["1011"] = "B";
    	bh["1100"] = "C";	bh["1101"] = "D";	bh["1110"] = "E";	bh["1111"] = "F";
    	// 小数ならば
    	IFB POS(".", bin) <> 0 THEN
    		DIM num = COPY(bin, 1, POS(".", bin) - 1)
    		DIM frac = COPY(bin, POS(".", bin) + 1)
    		num = strPad(num, CEIL(LENGTH(num) / 4) * 4, "0", LEFT)
    		frac = strPad(frac, CEIL(LENGTH(frac) / 4) * 4, "0", RIGHT)
    		DIM hex = ""
    		FOR i = 1 TO LENGTH(num) STEP 4
    			hex = hex + bh[COPY(num, i, 4)]
    		NEXT
    		hex = hex + "."
    		FOR i = 1 TO LENGTH(frac) STEP 4
    			hex = hex + bh[COPY(frac, i, 4)]
    		NEXT
    		RESULT = hex
    	ELSE
    		len = CEIL(LENGTH(bin) / 4) * 4
    		FOR i = 1 TO len - LENGTH(bin)
    			bin = "0" + bin
    		NEXT
    		bin = REPLACE(FORMAT(bin, len), " ", "0")
    		hex = ""
    		FOR i = 1 TO LENGTH(bin) / 4
    			str = COPY(bin, i * 4 - 3, 4)
    			hex = hex + bh[str]
    		NEXT
    		RESULT = hex
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arg1 : 数値1(10進数) 
    //   arg2 : 数値2(10進数) 
    // 【戻り値】
    //   2つの数値のビット毎の論理積 
    //////////////////////////////////////////////////
    FUNCTION bitAnd(arg1, arg2)
    	DIM args[1] = arg1, arg2
    	DIM bins[1]
    	DIM decimals[1]
    	DIM integers[1]
    	DIM keta[1]
    	IFB ABS(arg1) <> arg1 OR ABS(arg2) <> arg2 THEN
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	FOR i = 0 TO 1
    		bins[i] = decToBin(args[i])
    		decimals[i] = 0
    		IFB POS(".", bins[i]) <> 0 THEN
    			integers[i] = COPY(bins[i], 1, POS(".", bins[i]) - 1)
    			decimals[i] = COPY(bins[i], POS(".", bins[i]) + 1)
    		ELSE
    			integers[i] = bins[i]
    		ENDIF
    	NEXT
    	keta[0] = IIF(LENGTH(integers[0]) > LENGTH(integers[1]), LENGTH(integers[0]), LENGTH(integers[1]))
    	integers[0] = strPad(integers[0], keta[0], "0", LEFT)
    	integers[1] = strPad(integers[1], keta[0], "0", LEFT)
    	keta[1] = IIF(LENGTH(decimals[0]) > LENGTH(decimals[1]), LENGTH(decimals[0]), LENGTH(decimals[1]))
    	decimals[0] = strPad(decimals[0], keta[1], "0", RIGHT)
    	decimals[1] = strPad(decimals[1], keta[1], "0", RIGHT)
    	DIM bin = ""
    	FOR i = 1 TO keta[0]
    		bin = bin + (VAL(COPY(integers[0], i, 1)) AND VAL(COPY(integers[1], i, 1)))
    	NEXT
    	bin = bin + "."
    	FOR i = 1 TO keta[1]
    		bin = bin + (VAL(COPY(decimals[0], i, 1)) AND VAL(COPY(decimals[1], i, 1)))
    	NEXT
    	RESULT = binToDec(bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 10進数もしくは2進数の値 
    //   bit : ビット 
    // 【戻り値】
    //   ビットを反転した値 
    //////////////////////////////////////////////////
    FUNCTION bitNot(num, bit = EMPTY)
    	IFB isString(num) THEN
    		DIM res = ""
    		FOR i = 1 TO LENGTH(num)
    			DIM str = COPY(num, i, 1)
    			IFB str = "0" OR str = "1" THEN
    				res = res + (1 - VAL(str))
    			ELSE
    				res = res + str
    			ENDIF
    		NEXT
    		RESULT = res
    	ELSE
    		DIM exponent = IIF(bit = EMPTY, CEIL(LOGN(2, num + 1)), bit)
    		RESULT = POWER(2, exponent) - num - 1
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arg1 : 数値1(10進数) 
    //   arg2 : 数値2(10進数) 
    // 【戻り値】
    //   2つの数値のビット毎の排他的論理和 
    //////////////////////////////////////////////////
    FUNCTION bitXor(arg1, arg2)
    	DIM args[1] = arg1, arg2
    	DIM bins[1]
    	DIM decimals[1]
    	DIM integers[1]
    	DIM keta[1]
    	IFB ABS(arg1) <> arg1 OR ABS(arg2) <> arg2 THEN
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	FOR i = 0 TO 1
    		bins[i] = decToBin(args[i])
    		decimals[i] = 0
    		IFB POS(".", bins[i]) <> 0 THEN
    			integers[i] = COPY(bins[i], 1, POS(".", bins[i]) - 1)
    			decimals[i] = COPY(bins[i], POS(".", bins[i]) + 1)
    		ELSE
    			integers[i] = bins[i]
    		ENDIF
    	NEXT
    	keta[0] = IIF(LENGTH(integers[0]) > LENGTH(integers[1]), LENGTH(integers[0]), LENGTH(integers[1]))
    	integers[0] = strPad(integers[0], keta[0], "0", LEFT)
    	integers[1] = strPad(integers[1], keta[0], "0", LEFT)
    	keta[1] = IIF(LENGTH(decimals[0]) > LENGTH(decimals[1]), LENGTH(decimals[0]), LENGTH(decimals[1]))
    	decimals[0] = strPad(decimals[0], keta[1], "0", RIGHT)
    	decimals[1] = strPad(decimals[1], keta[1], "0", RIGHT)
    	DIM bin = ""
    	FOR i = 1 TO keta[0]
    		bin = bin + (VAL(COPY(integers[0], i, 1)) XOR VAL(COPY(integers[1], i, 1)))
    	NEXT
    	bin = bin + "."
    	FOR i = 1 TO keta[1]
    		bin = bin + (VAL(COPY(decimals[0], i, 1)) XOR VAL(COPY(decimals[1], i, 1)))
    	NEXT
    	RESULT = binToDec(bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 単位換算する数値 
    //   before : 変換前の単位 
    //   after : 変換後の単位 
    // 【戻り値】
    //   指定した単位に変換した数値 
    //////////////////////////////////////////////////
    FUNCTION convert(num, before, after)
    	HASHTBL unit
    	
    	// 重量
    	unit["g,sg"] = "num * 6.85217658567918 * POWER(10, -5)"
    	unit["g,lbm"] = "num * 2.20462262184878 * POWER(10, -3)"
    	unit["g,u"] = "num * 6.02217 * POWER(10, +23)"
    	unit["g,ozm"] = "num * 3.52739619495804 * POWER(10, -2)"
    	unit["sg,g"] = "num * 1.45939029372064 * POWER(10, +4)"
    	unit["sg,lbm"] = "num * 3.21740485564304 * POWER(10, +1)"
    	unit["sg,u"] = "num * 8.78869644513561 * POWER(10, +27)"
    	unit["sg,ozm"] = "num * 5.14784776902887 * POWER(10, +2)"
    	unit["lbm,g"] = "num * 4.5359237 * POWER(10, +2)"
    	unit["lbm,sg"] = "num * 3.10809501715673 * POWER(10, -2)"
    	unit["lbm,u"] = "num * 2.7316103628429 * POWER(10, +26)"
    	unit["lbm,ozm"] = "num * 1.6 * POWER(10, +1)"
    	unit["u,g"] = "num * 1.66053100460465 * POWER(10, -24)"
    	unit["u,sg"] = "num * 1.13782516695463 * POWER(10, -28)"
    	unit["u,lbm"] = "num * 3.66084421703269 * POWER(10, -27)"
    	unit["u,ozm"] = "num * 5.8573507472523 * POWER(10, -26)"
    	unit["ozm,g"] = "num * 2.8349523125 * POWER(10, +1)"
    	unit["ozm,sg"] = "num * 1.94255938572295 * POWER(10, -3)"
    	unit["ozm,lbm"] = "num * 6.25 * POWER(10, -2)"
    	unit["ozm,u"] = "num * 1.70725647677681 * POWER(10, +25)"
    	
    	// 距離
    	unit["m,mi"] = "num * 6.21371192237334 * POWER(10, -4)"
    	unit["m,Nmi"] = "num * 5.39956803455724 * POWER(10, -4)"
    	unit["m,in"] = "num * 3.93700787401575 * POWER(10, +1)"
    	unit["m,ft"] = "num * 3.28083989501312 * POWER(10, +0)"
    	unit["m,yd"] = "num * 1.09361329833771 * POWER(10, +0)"
    	unit["m,ang"] = "num * 1 * POWER(10, +10)"
    	unit["m,pica"] = "num * 2.36220472440945 * POWER(10, +2)"
    	unit["mi,m"] = "num * 1.609344 * POWER(10, +3)"
    	unit["mi,Nmi"] = "num * 8.68976241900648 * POWER(10, -1)"
    	unit["mi,in"] = "num * 6.336 * POWER(10, +4)"
    	unit["mi,ft"] = "num * 5.28 * POWER(10, +3)"
    	unit["mi,yd"] = "num * 1.76 * POWER(10, +3)"
    	unit["mi,ang"] = "num * 1.609344 * POWER(10, +13)"
    	unit["mi,pica"] = "num * 3.8016 * POWER(10, +5)"
    	unit["Nmi,m"] = "num * 1.852 * POWER(10, +3)"
    	unit["Nmi,mi"] = "num * 1.15077944802354 * POWER(10, +0)"
    	unit["Nmi,in"] = "num * 7.29133858267717 * POWER(10, +4)"
    	unit["Nmi,ft"] = "num * 6.0761154855643 * POWER(10, +3)"
    	unit["Nmi,yd"] = "num * 2.02537182852143 * POWER(10, +3)"
    	unit["Nmi,ang"] = "num * 1.852 * POWER(10, +13)"
    	unit["Nmi,pica"] = "num * 4.3748031496063 * POWER(10, +5)"
    	unit["in,m"] = "num * 2.54 * POWER(10, -2)"
    	unit["in,mi"] = "num * 1.57828282828283 * POWER(10, -5)"
    	unit["in,Nmi"] = "num * 1.37149028077754 * POWER(10, -5)"
    	unit["in,ft"] = "num * 8.33333333333333 * POWER(10, -2)"
    	unit["in,yd"] = "num * 2.77777777777778 * POWER(10, -2)"
    	unit["in,ang"] = "num * 2.54 * POWER(10, +8)"
    	unit["in,pica"] = "num * 6 * POWER(10, +0)"
    	unit["ft,m"] = "num * 3.048 * POWER(10, -1)"
    	unit["ft,mi"] = "num * 1.89393939393939 * POWER(10, -4)"
    	unit["ft,Nmi"] = "num * 1.64578833693305 * POWER(10, -4)"
    	unit["ft,in"] = "num * 1.2 * POWER(10, +1)"
    	unit["ft,yd"] = "num * 3.33333333333333 * POWER(10, -1)"
    	unit["ft,ang"] = "num * 3.048 * POWER(10, +9)"
    	unit["ft,pica"] = "num * 7.2 * POWER(10, +1)"
    	unit["yd,m"] = "num * 9.144 * POWER(10, -1)"
    	unit["yd,mi"] = "num * 5.68181818181818 * POWER(10, -4)"
    	unit["yd,Nmi"] = "num * 4.93736501079914 * POWER(10, -4)"
    	unit["yd,in"] = "num * 3.6 * POWER(10, +1)"
    	unit["yd,ft"] = "num * 3 * POWER(10, +0)"
    	unit["yd,ang"] = "num * 9.144 * POWER(10, +9)"
    	unit["yd,pica"] = "num * 2.16 * POWER(10, +2)"
    	unit["ang,m"] = "num * 1 * POWER(10, -10)"
    	unit["ang,mi"] = "num * 6.21371192237334 * POWER(10, -14)"
    	unit["ang,Nmi"] = "num * 5.39956803455724 * POWER(10, -14)"
    	unit["ang,in"] = "num * 3.93700787401575 * POWER(10, -9)"
    	unit["ang,ft"] = "num * 3.28083989501312 * POWER(10, -10)"
    	unit["ang,yd"] = "num * 1.09361329833771 * POWER(10, -10)"
    	unit["ang,pica"] = "num * 2.36220472440945 * POWER(10, -8)"
    	unit["pica,m"] = "num * 4.23333333333333 * POWER(10, -3)"
    	unit["pica,mi"] = "num * 2.63047138047138 * POWER(10, -6)"
    	unit["pica,Nmi"] = "num * 2.28581713462923 * POWER(10, -6)"
    	unit["pica,in"] = "num * 1.66666666666667 * POWER(10, -1)"
    	unit["pica,ft"] = "num * 1.38888888888889 * POWER(10, -2)"
    	unit["pica,yd"] = "num * 4.62962962962963 * POWER(10, -3)"
    	unit["pica,ang"] = "num * 4.23333333333333 * POWER(10, +7)"
    
    	// 時間
    	unit["yr,day"] = "num * 3.6525 * POWER(10, +2)"
    	unit["yr,hr"] = "num * 8.766 * POWER(10, +3)"
    	unit["yr,mn"] = "num * 5.2596 * POWER(10, +5)"
    	unit["yr,sec"] = "num * 3.15576 * POWER(10, +7)"
    	unit["day,yr"] = "num * 2.7378507871321 * POWER(10, -3)"
    	unit["day,hr"] = "num * 2.4 * POWER(10, +1)"
    	unit["day,mn"] = "num * 1.44 * POWER(10, +3)"
    	unit["day,sec"] = "num * 8.64 * POWER(10, +4)"
    	unit["hr,yr"] = "num * 1.14077116130504 * POWER(10, -4)"
    	unit["hr,day"] = "num * 4.16666666666667 * POWER(10, -2)"
    	unit["hr,mn"] = "num * 6 * POWER(10, +1)"
    	unit["hr,sec"] = "num * 3.6 * POWER(10, +3)"
    	unit["mn,yr"] = "num * 1.90128526884174 * POWER(10, -6)"
    	unit["mn,day"] = "num * 6.94444444444444 * POWER(10, -4)"
    	unit["mn,hr"] = "num * 1.66666666666667 * POWER(10, -2)"
    	unit["mn,sec"] = "num * 6 * POWER(10, +1)"
    	unit["sec,yr"] = "num * 3.16880878140289 * POWER(10, -8)"
    	unit["sec,day"] = "num * 1.15740740740741 * POWER(10, -5)"
    	unit["sec,hr"] = "num * 2.77777777777778 * POWER(10, -4)"
    	unit["sec,mn"] = "num * 1.66666666666667 * POWER(10, -2)"
    	
    	// 圧力
    	unit["Pa,atm"] = "num * 9.86923266716013 * POWER(10, -6)"
    	unit["Pa,mmHg"] = "num * 7.5006168270417 * POWER(10, -3)"
    	unit["atm,Pa"] = "num * 1.01325 * POWER(10, +5)"
    	unit["atm,mmHg"] = "num * 7.6 * POWER(10, +2)"
    	unit["mmHg,Pa"] = "num * 1.33322368421053 * POWER(10, +2)"
    	unit["mmHg,atm"] = "num * 1.31578947368421 * POWER(10, -3)"
    	
    	// 物理的な力
    	unit["N,dyn"] = "num * 1 * POWER(10, +5)"
    	unit["N,lbf"] = "num * 2.2480894309971 * POWER(10, -1)"
    	unit["dyn,N"] = "num * 1 * POWER(10, -5)"
    	unit["dyn,lbf"] = "num * 2.2480894309971 * POWER(10, -6)"
    	unit["lbf,N"] = "num * 4.4482216152605 * POWER(10, +0)"
    	unit["lbf,dyn"] = "num * 4.4482216152605 * POWER(10, +5)"
    	
    	// エネルギー
    	unit["J,e"] = "num * 1 * POWER(10, +7)"
    	unit["J,cal"] = "num * 2.38845896627496 * POWER(10, -1)"
    	unit["J,eV"] = "num * 6.241457 * POWER(10, +18)"
    	unit["J,HPh"] = "num * 3.72506135998619 * POWER(10, -7)"
    	unit["J,Wh"] = "num * 2.77777777777778 * POWER(10, -4)"
    	unit["J,flb"] = "num * 7.37562149277265 * POWER(10, -1)"
    	unit["J,BTU"] = "num * 9.47817120313317 * POWER(10, -4)"
    	unit["J,c"] = "num * 2.39005736137667 * POWER(10, -1)"
    	unit["e,J"] = "num * 1 * POWER(10, -7)"
    	unit["e,cal"] = "num * 2.38845896627496 * POWER(10, -8)"
    	unit["e,eV"] = "num * 6.241457 * POWER(10, +11)"
    	unit["e,HPh"] = "num * 3.72506135998619 * POWER(10, -14)"
    	unit["e,Wh"] = "num * 2.77777777777778 * POWER(10, -11)"
    	unit["e,flb"] = "num * 7.37562149277265 * POWER(10, -8)"
    	unit["e,BTU"] = "num * 9.47817120313317 * POWER(10, -11)"
    	unit["e,c"] = "num * 2.39005736137667 * POWER(10, -8)"
    	unit["cal,J"] = "num * 4.1868 * POWER(10, +0)"
    	unit["cal,e"] = "num * 4.1868 * POWER(10, +7)"
    	unit["cal,eV"] = "num * 2.61317321676 * POWER(10, +19)"
    	unit["cal,HPh"] = "num * 1.55960869019902 * POWER(10, -6)"
    	unit["cal,Wh"] = "num * 1.163 * POWER(10, -3)"
    	unit["cal,flb"] = "num * 3.08802520659405 * POWER(10, +0)"
    	unit["cal,BTU"] = "num * 3.9683207193278 * POWER(10, -3)"
    	unit["cal,c"] = "num * 1.00066921606119 * POWER(10, +0)"
    	unit["eV,J"] = "num * 1.60219000146921 * POWER(10, -19)"
    	unit["eV,e"] = "num * 1.60219000146921 * POWER(10, -12)"
    	unit["eV,cal"] = "num * 3.82676507468522 * POWER(10, -20)"
    	unit["eV,HPh"] = "num * 5.96825606582916 * POWER(10, -26)"
    	unit["eV,Wh"] = "num * 4.45052778185891 * POWER(10, -23)"
    	unit["eV,flb"] = "num * 1.18171470103417 * POWER(10, -19)"
    	unit["eV,BTU"] = "num * 1.51858311338733 * POWER(10, -22)"
    	unit["eV,c"] = "num * 3.82932600733558 * POWER(10, -20)"
    	unit["HPh,J"] = "num * 2.68451953769617 * POWER(10, +6)"
    	unit["HPh,e"] = "num * 2.68451953769617 * POWER(10, +13)"
    	unit["HPh,cal"] = "num * 6.41186475995073 * POWER(10, +5)"
    	unit["HPh,eV"] = "num * 1.67553132601905 * POWER(10, +25)"
    	unit["HPh,Wh"] = "num * 7.4569987158227 * POWER(10, +2)"
    	unit["HPh,flb"] = "num * 1.98 * POWER(10, +6)"
    	unit["HPh,BTU"] = "num * 2.54443357764402 * POWER(10, +3)"
    	unit["HPh,c"] = "num * 6.41615568283024 * POWER(10, +5)"
    	unit["Wh,J"] = "num * 3.6 * POWER(10, +3)"
    	unit["Wh,e"] = "num * 3.6 * POWER(10, +10)"
    	unit["Wh,cal"] = "num * 8.59845227858985 * POWER(10, +2)"
    	unit["Wh,eV"] = "num * 2.24692452 * POWER(10, +22)"
    	unit["Wh,HPh"] = "num * 1.34102208959503 * POWER(10, -3)"
    	unit["Wh,flb"] = "num * 2.65522373739816 * POWER(10, +3)"
    	unit["Wh,BTU"] = "num * 3.41214163312794 * POWER(10, +0)"
    	unit["Wh,c"] = "num * 8.60420650095602 * POWER(10, +2)"
    	unit["flb,J"] = "num * 1.3558179483314 * POWER(10, +0)"
    	unit["flb,e"] = "num * 1.3558179483314 * POWER(10, +7)"
    	unit["flb,cal"] = "num * 3.23831553532865 * POWER(10, -1)"
    	unit["flb,eV"] = "num * 8.46227942433866 * POWER(10, +18)"
    	unit["flb,HPh"] = "num * 5.05050505050505 * POWER(10, -7)"
    	unit["flb,Wh"] = "num * 3.76616096758722 * POWER(10, -4)"
    	unit["flb,BTU"] = "num * 1.28506746345658 * POWER(10, -3)"
    	unit["flb,c"] = "num * 3.24048266809608 * POWER(10, -1)"
    	unit["BTU,J"] = "num * 1.05505585262 * POWER(10, +3)"
    	unit["BTU,e"] = "num * 1.05505585262 * POWER(10, +10)"
    	unit["BTU,cal"] = "num * 2.51995761111111 * POWER(10, +2)"
    	unit["BTU,eV"] = "num * 6.58508573672607 * POWER(10, +21)"
    	unit["BTU,HPh"] = "num * 3.93014778922204 * POWER(10, -4)"
    	unit["BTU,Wh"] = "num * 2.93071070172222 * POWER(10, -1)"
    	unit["BTU,flb"] = "num * 7.78169262265965 * POWER(10, +2)"
    	unit["BTU,c"] = "num * 2.52164400721797 * POWER(10, +2)"
    	unit["c,J"] = "num * 4.184 * POWER(10, +0)"
    	unit["c,e"] = "num * 4.184 * POWER(10, +7)"
    	unit["c,cal"] = "num * 9.99331231489443 * POWER(10, -1)"
    	unit["c,eV"] = "num * 2.6114256088 * POWER(10, +19)"
    	unit["c,HPh"] = "num * 1.55856567301822 * POWER(10, -6)"
    	unit["c,Wh"] = "num * 1.16222222222222 * POWER(10, -3)"
    	unit["c,flb"] = "num * 3.08596003257608 * POWER(10, +0)"
    	unit["c,BTU"] = "num * 3.96566683139092 * POWER(10, -3)"
    	
    	// 仕事率
    	unit["HP,W"] = "num * 7.4569987158227 * POWER(10, +2)"
    	unit["W,HP"] = "num * 1.34102208959503 * POWER(10, -3)"
    	
    	// 磁力
    	unit["T,ga"] = "num * 1 * POWER(10, +4)"
    	unit["ga,T"] = "num * 1 * POWER(10, -4)"
    	
    	// 温度
    	unit["C,F"] = "num * (9/5) + 32"
    	unit["C,K"] = "num + 273.15"
    	unit["F,C"] = "(num - 32) * (9/5)"
    	unit["F,K"] = "(num - 32) * (5/9) + 273.15"
    	unit["K,C"] = "num - 23373.15"
    	unit["K,F"] = "(num - 273.15) * (9/5) + 32"
    	
    	// 体積(容積)
    	unit["tsp,tbs"] = "num * 3.33333333333333 * POWER(10, -1)"
    	unit["tsp,oz"] = "num * 1.66666666666667 * POWER(10, -1)"
    	unit["tsp,cup"] = "num * 2.08333333333333 * POWER(10, -2)"
    	unit["tsp,us_pt"] = "num * 1.04166666666667 * POWER(10, -2)"
    	unit["tsp,uk_pt"] = "num * 8.67368942321863 * POWER(10, -3)"
    	unit["tsp,qt"] = "num * 5.20833333333333 * POWER(10, -3)"
    	unit["tsp,gal"] = "num * 1.30208333333333 * POWER(10, -3)"
    	unit["tbs,tsp"] = "num * 3 * POWER(10, +0)"
    	unit["tbs,oz"] = "num * 5 * POWER(10, -1)"
    	unit["tbs,cup"] = "num * 6.25 * POWER(10, -2)"
    	unit["tbs,us_pt"] = "num * 3.125 * POWER(10, -2)"
    	unit["tbs,uk_pt"] = "num * 2.60210682696559 * POWER(10, -2)"
    	unit["tbs,qt"] = "num * 1.5625 * POWER(10, -2)"
    	unit["tbs,gal"] = "num * 3.90625 * POWER(10, -3)"
    	unit["oz,tsp"] = "num * 6 * POWER(10, +0)"
    	unit["oz,tbs"] = "num * 2 * POWER(10, +0)"
    	unit["oz,cup"] = "num * 1.25 * POWER(10, -1)"
    	unit["oz,us_pt"] = "num * 6.25 * POWER(10, -2)"
    	unit["oz,uk_pt"] = "num * 5.20421365393118 * POWER(10, -2)"
    	unit["oz,qt"] = "num * 3.125 * POWER(10, -2)"
    	unit["oz,gal"] = "num * 7.8125 * POWER(10, -3)"
    	unit["cup,tsp"] = "num * 4.8 * POWER(10, +1)"
    	unit["cup,tbs"] = "num * 1.6 * POWER(10, +1)"
    	unit["cup,oz"] = "num * 8 * POWER(10, +0)"
    	unit["cup,us_pt"] = "num * 5 * POWER(10, -1)"
    	unit["cup,uk_pt"] = "num * 4.16337092314494 * POWER(10, -1)"
    	unit["cup,qt"] = "num * 2.5 * POWER(10, -1)"
    	unit["cup,gal"] = "num * 6.25 * POWER(10, -2)"
    	unit["us_pt,tsp"] = "num * 9.6 * POWER(10, +1)"
    	unit["us_pt,tbs"] = "num * 3.2 * POWER(10, +1)"
    	unit["us_pt,oz"] = "num * 1.6 * POWER(10, +1)"
    	unit["us_pt,cup"] = "num * 2 * POWER(10, +0)"
    	unit["us_pt,uk_pt"] = "num * 8.32674184628989 * POWER(10, -1)"
    	unit["us_pt,qt"] = "num * 5 * POWER(10, -1)"
    	unit["us_pt,gal"] = "num * 1.25 * POWER(10, -1)"
    	unit["uk_pt,tsp"] = "num * 1.15291192848466 * POWER(10, +2)"
    	unit["uk_pt,tbs"] = "num * 3.84303976161554 * POWER(10, +1)"
    	unit["uk_pt,oz"] = "num * 1.92151988080777 * POWER(10, +1)"
    	unit["uk_pt,cup"] = "num * 2.40189985100971 * POWER(10, +0)"
    	unit["uk_pt,us_pt"] = "num * 1.20094992550486 * POWER(10, +0)"
    	unit["uk_pt,qt"] = "num * 6.00474962752428 * POWER(10, -1)"
    	unit["uk_pt,gal"] = "num * 1.50118740688107 * POWER(10, -1)"
    	unit["qt,tsp"] = "num * 1.92 * POWER(10, +2)"
    	unit["qt,tbs"] = "num * 6.4 * POWER(10, +1)"
    	unit["qt,oz"] = "num * 3.2 * POWER(10, +1)"
    	unit["qt,cup"] = "num * 4 * POWER(10, +0)"
    	unit["qt,us_pt"] = "num * 2 * POWER(10, +0)"
    	unit["qt,uk_pt"] = "num * 1.66534836925798 * POWER(10, +0)"
    	unit["qt,gal"] = "num * 2.5 * POWER(10, -1)"
    	unit["gal,tsp"] = "num * 7.68 * POWER(10, +2)"
    	unit["gal,tbs"] = "num * 2.56 * POWER(10, +2)"
    	unit["gal,oz"] = "num * 1.28 * POWER(10, +2)"
    	unit["gal,cup"] = "num * 1.6 * POWER(10, +1)"
    	unit["gal,us_pt"] = "num * 8 * POWER(10, +0)"
    	unit["gal,uk_pt"] = "num * 6.66139347703191 * POWER(10, +0)"
    	unit["gal,qt"] = "num * 4 * POWER(10, +0)"
    
    	RESULT = EVAL(unit[before + "," + after])
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   interval : 加算する時間間隔を表す文字列式(yyyy:年、m:月、d:日、ww:週、h:時、n:分、s:秒) 
    //   num : dateに加算する値。未来は正、過去は負で指定 
    //   date : 時間間隔を加算する日付 
    // 【戻り値】
    //   日時(date)に、指定した単位(interval)の時間(num)を加算して返します 
    //////////////////////////////////////////////////
    FUNCTION dateAdd(interval, num, date)
    	DIM year, month, day, d
    	GETTIME(0, date)
    	DIM time = G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2
    	SELECT interval
    		CASE "yyyy"
    			d = (G_TIME_YY + num) + "/" + G_TIME_MM2 + "/" + G_TIME_DD2
    			IF time <> "00:00:00" THEN d = d + " " + time
    		CASE "m"
    			IFB num > 0 THEN
    				year = G_TIME_YY + INT((G_TIME_MM + num) / 12)
    				month = REPLACE(FORMAT(((G_TIME_MM + num) MOD 12), 2), " ", "0")
    			ELSE
    				year = G_TIME_YY + CEIL((G_TIME_MM + num) / 12 - 1)
    				month = REPLACE(FORMAT(G_TIME_MM - (ABS(num) MOD 12), 2), " ", "0")
    			ENDIF
    			IF month = "00" THEN month = 12
    			day = G_TIME_DD2
    			d = "" + year + month + day
    			IFB !isDate(d) THEN
    				d = year + "/" + month + "/" + "01"
    				d = getEndOfMonth(d)
    			ELSE
    				d = year + "/" + month + "/" + day
    			ENDIF
    			IF time <> "00:00:00" THEN d = d + " " + time
    		CASE "d"
    			t = GETTIME(num, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "ww"
    			t = GETTIME(num * 7, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "h"
    			t = GETTIME(num / 24, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "n"
    			t = GETTIME(num / 1440, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    		CASE "s"
    			t = GETTIME(num / 86400, date)
    			d = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2 + IIF(t MOD 86400, " " + G_TIME_HH2 + ":" + G_TIME_NN2 + ":" + G_TIME_SS2, "")
    	SELEND
    	RESULT = d
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   interval : 時間単位(yyyy︰年、q:四半期、m︰月、d︰日、w:週日、ww:週、h:時、n:分、s:秒) 
    //   date1 : 日時1 
    //   date2 : 日時2 
    // 【戻り値】
    //   date2からdate1を引いた時間間隔を求めます。 
    //////////////////////////////////////////////////
    FUNCTION dateDiff(interval, date1, date2)
    	DIM y1, y2, m1, m2, d1, d2, d
    	SELECT interval
    		CASE "yyyy"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			d = y2 - y1
    		CASE "q"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			m1 = G_TIME_MM
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			m2 = G_TIME_MM
    			d = y2 * 4 + CEIL(m2/3) - (y1 * 4 + CEIL(m1/3))
    		CASE "m"
    			GETTIME(0, date1)
    			y1 = G_TIME_YY
    			m1 = G_TIME_MM
    			GETTIME(0, date2)
    			y2 = G_TIME_YY
    			m2 = G_TIME_MM
    			d = (y2 - y1) * 12 + m2 - m1
    		CASE "d"
    			d1 = GETTIME(0, date1)
    			d2 = GETTIME(0, date2)
    			d = (d2 - d1) / 86400
    		CASE "w"
    			d = INT(dateDiff("d", date1, date2) / 7)
    		CASE "ww"
    			date1 = dateAdd("d", -1 * getWeekday(date1), date1)
    			d = INT(dateDiff("d", date1, date2) / 7)
    		CASE "h"
    			d = dateDiff("d", date1, date2) * 24
    		CASE "n"
    			d = dateDiff("d", date1, date2) * 1440
    		CASE "s"
    			d = dateDiff("d", date1, date2) * 86400
    	SELEND
    	RESULT = d
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    MODULE Decimal
    	CONST BASE = 1E+7
    	CONST LOG_BASE = 7
    	CONST MAX_SAFE_INTEGER = 1E+15 - 1
    	CONST MAX_DIGITS = 1E+9
    	PUBLIC CtorPrecision = 20
    	PUBLIC CtorRounding = 4
    	PUBLIC CtorQuadrant = EMPTY
    	PUBLIC CtorModulo = 1
    	DIM maxE = 9E+15
    	DIM minE = -9E+15
    	DIM inexact = FALSE
    	CONST toExpNeg = -7
    	CONST toExpPos = 21
    	CONST MathLN10 = 2.302585092994046
    	CONST LN10 = "2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983" + _
    					"4196778404228624863340952546508280675666628736909878168948290720832555468084379989482623319852839350" + _
    					"5308965377732628846163366222287698219886746543667474404243274365155048934314939391479619404400222105" + _
    					"1017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806" + _
    					"4450706480002775026849167465505868569356734206705811364292245544057589257242082413146956890167589402" + _
    					"5677631135691929203337658714166023010570308963457207544037084746994016826928280848118428931484852494" + _
    					"8644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938" + _
    					"6629769795221107182645497347726624257094293225827985025855097852653832076067263171643095059950878075" + _
    					"2371033310119785754733154142180842754386359177811705430982748238504564801909561029929182431823752535" + _
    					"7709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978" + _
    					"748873771345686209167058"
    	CONST isBinary = "^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$"
    	CONST isHex = "^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$"
    	CONST isOctal = "^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$"
    	CONST isDecimal = "^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$"
    	CONST LN10PRECISION = LENGTH(LN10) - 1
    	CONST PI = "3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679" + _
    					"8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196" + _
    					"4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273" + _
    					"7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094" + _
    					"3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912" + _
    					"9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132" + _
    					"0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235" + _
    					"4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859" + _
    					"5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303" + _
    					"5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989" + _
    					"380952572010654858632789"
    	CONST PI_PRECISION = LENGTH(PI) - 1
    	DIM external = TRUE
    	//////////////////////////////
    	// メイン関数
    	//////////////////////////////
    	FUNCTION absoluteValue(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IF x[0] < 0 THEN x[0] = 1
    		RESULT = finalise(x)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION ceil(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 2)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION clampedTo(x, min, max, isNumeric = FALSE)
    		x = Constructor(x)
    		min = Constructor(min)
    		max = Constructor(max)
    		IFB !min[0] OR !max[0] THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB gt(min, max) THEN
    			RESULT = ERR_VALUE
    			EXIT
    		ENDIF
    		k = cmp(x, min)
    		RESULT = IIF(k < 0, min, IIF(cmp(x, max) > 0, max, Constructor(x)))
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION comparedTo(x, y)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)
    		xd = SLICE(x, 2)
    		yd = SLICE(IIF(VARTYPE(y) < 8192, Constructor(y), y), 2)
    		xs = x[0]
    		ys = y[0]
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either NaN or ±Infinity?
    		IFB (xIsNaN OR yIsNaN) OR(xIsInf OR yIsInf) THEN
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			ELSEIF xs <> ys THEN
    				RESULT = xs
    			ELSEIF JOIN(xd, "") = JOIN(yd, "") THEN
    				RESULT = 0
    			ELSEIF POWER(VARTYPE(!xd[0], VAR_INTEGER), IIF(xs < 0, 1, 0)) THEN
    				RESULT = 1
    			ELSE
    				RESULT = -1
    			ENDIF
    			EXIT
    		ENDIF
    		// Either zero?
    		IFB xIsZero OR yIsZero THEN
    			RESULT = IIF(xd[0], xs, IIF(yd[0], -1 * ys, 0))
    			EXIT
    		ENDIF
    		// Signs differ?
    		IFB xs <> ys THEN
    			RESULT = xs
    			EXIT
    		ENDIF
    		// Compare exponents.
    		IFB x[1] <> y[1] THEN
    			RESULT = IIF(bitXor(x[1] > y[1], xs < 0), 1, -1)
    			EXIT
    		ENDIF
    		xdL = LENGTH(xd)
    		ydL = LENGTH(yd)
    		// Compare digit by digit.
    		FOR i = 0 TO IIF(xdL < ydL, xdL, ydL) - 1
    			IFB xd[i] <> yd[i] THEN
    				RESULT = IIF(xd[i] > yd[i], 1, -1)
    				RESULT = IIF(xs < 0, -1 * RESULT, RESULT)
    				EXIT
    			ENDIF
    		NEXT
    		// Compare lengths.
    		RESULT = IIF(xdL = ydL, 0, IIF(xdL > POWER(ydL, xs) < 0, 1, -1))
    	FEND
    	FUNCTION cosine(x, isNumeric = FALSE)
    		x = Constructor(x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		xd = SLICE(x, 2)
    		IFB !LENGTH(xd) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		// cos(0) = cos(-0) = 1
    		IFB !xd[0] THEN
    			RESULT = Constructor(1)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = VAL(x[1]), sd(x)
    		CtorPrecision = pr + large(array, 1) + LOG_BASE
    		CtorRounding = 1
    		x = cosine2(Ctor, toLessThanHalfPi2(Ctor, x))
    		CtorPrecision =  pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant = 2 OR CtorQuadrant = 3, neg(x), x), pr, rm, TRUE)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION cubeRoot(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		rep = 0
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		external = FALSE
    		// Initial estimate.
    		s = x[0] * POWER(x[0] * toString(x), 1/3)
    		// Math.cbrt underflow/overflow?
    		// Pass x to Math.pow as integer, then adjust the exponent of the result.
    		IFB !s OR ABS(s) = "INF" THEN
    			xd = SLICE(x, 2)
    			n = digitsToString(xd)
    			e = x[1]
    			// Adjust n exponent so it is a multiple of 3 away from x exponent.
    			s = e - LENGTH(n) + 1
    			IF s MOD 3 THEN n = n + IIF(s = 1 OR s = -2, "0", "00")
    			s = POWER(n, 1 / 3)
    			// Rarely, e may be one less than the result exponent value.
    			e = GLOBAL.floor((e + 1) / 3) - (e MOD 3 = IIF(e < 0, -1, 2))
    			IFB s = 1 / 0 THEN
    				n = "5e" + e
    			ELSE
    				n = toExponential(s)
    				n = COPY(n, 1, POS("e", n) + 1) + e
    			ENDIF
    			r = Constructor(n)
    			r[0] = x[0]
    		ELSE
    			r = Constructor(s)
    		ENDIF
    		e = CtorPrecision
    		sd = e + 3
    		// Halley's method.
    		// TODO? Compare Newton's method.
    		m = NULL
    		WHILE TRUE
    			t = r
    			td = SLICE(t, 2)
    			t3 = times(times(t, t), t)
    			t3plusx = plus(t3, x)
    			r = divide(times(plus(t3plusx, x), t), plus(t3plusx, t3), sd + 2, 1)
    			rd = SLICE(r, 2)
    			// TODO? Replace with for-loop and checkRoundingDigits.
    			n = digitsToString(rd)
    			IFB COPY(digitsToString(td), 1, sd) = COPY(n, 1, sd) THEN
    				n = COPY(n, sd - 3 + 1, 4)
    				// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999
    				// , i.e. approaching a rounding boundary, continue the iteration.
            		IFB n = "9999" OR !rep AND n = "4999" THEN
    					// On the first iteration only, check to see if rounding up gives the exact result as the
    					// nines may infinitely repeat.
    					IFB !rep THEN
    						t = finalise(t, e + 1, 0)
    						IFB eq(times(times(t, t), t), x) THEN
    							r = t
    							BREAK
    						ENDIF
    					ENDIF
    					sd = sd + 4
    					rep = 1
    				ELSE
    					// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
    					// If not, then there are further digits and m will be truthy.
    					IFB !n OR COPY(n, 2) AND COPY(n, 0) = "5" THEN
    						// Truncate to the first rounding digit.
    						finalise(r, e + 1, 1)
    						m = !eq(times(times(r, r), r), x)
    					ENDIF
    					BREAK
    				ENDIF
    			ENDIF
    		WEND
    		external = TRUE
    		RESULT = finalise(r, e, CtorRounding, m)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION decimalPlaces(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		d = SLICE(x, 2)
    		n = "NaN"
    		IFB LENGTH(d) THEN
    			DIM w = LENGTH(d) - 1
    			n = (w - GLOBAL.floor(x[1] / LOG_BASE)) * LOG_BASE
    			// Subtract the number of trailing zeros of the last word.
    			w = d[w]
    			IFB w THEN
    				WHILE w MOD 10 = 0
    					n = n - 1
    					w = w / 10
    				WEND
    			ENDIF
    			IF n < 0 THEN n = 0
    		ENDIF
    		RESULT = n
    	FEND
    	FUNCTION dividedBy(dividend, divisor, pr = NULL, rm = NULL, dp = NULL, _base = NULL, isnumeric = FALSE)
    		x = IIF(VARTYPE(dividend) < 8192, Constructor(dividend), dividend)
    		y = IIF(VARTYPE(divisor) < 8192, Constructor(divisor), divisor)
    		DIM sign = IIF(x[0]=y[0], 1, -1)
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either NaN, Infinity or 0?
    		IFB xIsNaN OR yIsNaN OR xIsInf OR yIsInf OR xIsZero OR yIsZero THEN
    			// Return NaN if either NaN, or both Infinity or 0.
    			// x,yのどちらかNaNならばNaN、両方ともInfinityか0ならNaNを返す
    			IFB (xIsNaN OR yIsNaN) OR (xIsInf AND yIsInf) OR (xIsZero AND yIsZero) THEN
    				RESULT = "NaN"
    			// xが0、yが±∞ならば±0を返す
    			ELSEIF xIsZero OR yIsInf THEN
    				RESULT = 0
    			// yが0ならば±∞を返す
    			ELSEIF yIsZero THEN
    				RESULT = IIF(isNegative(x), "-", "") + "INF"
    			ENDIF
    			RESULT = Constructor(RESULT)
    			EXIT
    		ENDIF
    		IFB _base <> NULL THEN
    			logBase = 1
    			e = x[1] - y[1]
    		ELSE
    			_base = BASE
    			logBase = LOG_BASE
    			value1 = x[1] / logBase
    			value2 = y[1] / logBase
    			e = GLOBAL.floor(x[1] / logBase) - GLOBAL.floor(y[1] / logBase)
    		ENDIF
    		yL = LENGTH(yd)
    		xL = LENGTH(xd)
    		DIM q = SAFEARRAY(0, 1)
    		q[0] = sign
    		q[1] = 0
    		DIM qd[-1]
    		// Result exponent may be one less than e.
    		// The digit array of a Decimal from toStringBinary may have trailing zeros.
    		IFB LENGTH(yd) > LENGTH(xd) THEN
    			DIM tmp[LENGTH(yd)]
    			SETCLEAR(tmp, 0)
    			FOR i = 0 TO UBound(xd)
    				tmp[i] = xd[i]
    			NEXT
    		ELSE
    			tmp = xd
    		ENDIF
    		i = 0
    		WHILE yd[i] = tmp[i]
    			i = i + 1
    			IF i = LENGTH(yd) THEN BREAK
    		WEND
    		IFB UBound(xd) >= i AND UBound(yd) >= i THEN
    			bool = IIF(VAL(yd[i]) > VAL(xd[i]), TRUE, FALSE)
    		ELSE
    			bool = FALSE
    		ENDIF
    		IF bool THEN e = e - 1
    		IFB pr = NULL THEN
    			pr = CtorPrecision
    			sd = pr
    			rm = CtorRounding
    		ELSEIF dp <> NULL THEN
    			sd = pr + (x[1] - y[1]) + 1
    		ELSE
    			sd = pr
    		ENDIF
    		IFB sd < 0 THEN
    			arrayPush(qd, 1)
    			more = TRUE
    		ELSE
    			// Convert precision in number of base 10 digits to base 1e7 digits.
    			sd = INT(sd / logBase + 2)
    			i = 0
    			// divisor < 1e7
    			IFB yL = 1 THEN
    				k = 0
    				yd = yd[0]
    				sd = sd + 1
    				// k is the carry.
    				WHILE (i < xL OR k) AND VARTYPE(sd, VAR_BOOLEAN)
    					sd = sd - 1
    					IF sd < 0 THEN BREAK
    					IFB i > UBound(xd) THEN
    						t = k * _base + 0
    					ELSE
    						t = k * _base + VAL(xd[i])
    					ENDIF
    					RESIZE(qd, i)
    					qd[i] = INT(t / yd)
    					k = INT(t MOD yd)
    					i = i + 1
    				WEND
    				arrayMerge(q, qd)
    				more = k OR i < xL
    			ELSE
    				// Normalise xd and yd so highest order digit of yd is >= base/2
    				k = INT(base / (VAL(yd[0]) + 1))
    				IFB k > 1 THEN
    					yd = multiplyInteger(yd, k, base)
    					xd = multiplyInteger(xd, k, base)
    					yL = LENGTH(yd)
    					xL = LENGTH(xd)
    				ENDIF
    				xi = yl
    				rem = SLICE(xd, 0, yL - 1)
    				remL = LENGTH(rem)
    				// Add zeros to make remainder as long as divisor.
    				WHILE remL < yL
    					RESIZE(rem, remL)
    					rem[remL] = 0
    					remL = remL + 1
    				WEND
    				yz = SLICE(yd)
    				arrayUnshift(yz, 0)
    				yd0 = yd[0]
    				IF yd[1] >= base / 2 THEN yd0 = VAL(yd0) + 1
    				WHILE TRUE
    					k = 0
    					// Compare divisor and remainder.
    					cmp = compare(yd, rem, yL, remL)
    					// If divisor < remainder.
    					IFB cmp < 0 THEN
    						// Calculate trial digit, k.
    						rem0 = rem[0]
    						IF yL <> remL THEN rem0 = rem0 * _base + INT(rem[1])
    						// k will be how many times the divisor goes into the current remainder.
    						k = INT(rem0 / yd0)
    						IFB k > 1 THEN
    							IF k >= base THEN k = base - 1
    							// product = divisor * trial digit.
    							prod = multiplyInteger(yd, k, base)
    							prodL = LENGTH(prod)
    							remL = LENGTH(rem)
    							// Compare product and remainder.
    							cmp = compare(prod, rem, prodL, remL)
    							// product > remainder.
    							IFB cmp = 1 THEN
    								k = k - 1
    								// Subtract divisor from product.
    								subtract(prod, IIF(yL < prodL, yz, yd), prodL, base)
    							ENDIF
    						ELSE
    							IFB k = 0 THEN
    								k = 1
    								cmp = k
    							ENDIF
    							prod = SLICE(yd)
    						ENDIF
    						prodL = LENGTH(prod)
    						IF prodL < remL THEN arrayUnshift(prod, 0)
    						// Subtract product from remainder.
    						subtract(rem, prod, remL, base)
    						IFB cmp = -1 THEN
    							remL = LENGTH(rem)
    							cmp = compare(yd, rem, yL, remL)
    							IFB cmp < 1 THEN
    								k = k + 1
    								subtract(rem, IIF(yL < remL, yz, yd), remL, base)
    							ENDIF
    						ENDIF
    						remL = LENGTH(rem)
    					ELSEIF cmp = 0 THEN
    						k = k + 1
    						rem = SAFEARRAY(-1)
    						rem[0] = 0
    					ENDIF
    					IF LENGTH(qd) >= i THEN RESIZE(qd, i)
    					IF LENGTH(q) >= i+2 THEN RESIZE(q, i+2)
    					qd[i] = k
    					q[i+2] = k
    					i = i + 1
    					IFB VARTYPE(cmp, VAR_BOOLEAN) AND VARTYPE(rem[0], VAR_BOOLEAN) THEN
    						IF UBound(rem) < remL THEN RESIZE(rem, remL)
    						IFB xi > UBound(xd) THEN
    							rem[remL] = 0
    						ELSE
    							rem[remL] = xd[xi]
    						ENDIF
    						remL = remL + 1
    					ELSE
    						TRY
    							rem[0] = xd[xi]
    						EXCEPT
    							rem[0] = NULL
    						ENDTRY
    						remL = 1
    					ENDIF
    					IFB (xi < xL OR UBound(rem) > 0) AND VARTYPE(sd, VAR_BOOLEAN) THEN
    						xi = xi + 1
    						sd = sd - 1
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				more = IIF(rem[0]<>NULL, TRUE, FALSE)
    			ENDIF
    			IFB !qd[0] THEN
    				arrayShift(qd)
    				RESIZE(q, 1)
    				arrayMerge(q, qd)
    			ENDIF
    		ENDIF
    		// logBase is 1 when divide is being used for base conversion.
    		IFB logBase = 1 THEN
    			q[1] = e
    			inexact = more
    			RESULT = SLICE(q)
    			EXIT
    		ELSE
    			// To calculate q.e, first get the number of digits of qd[0].
    			i = 1
    			k = qd[0]
    			WHILE k >= 10
    				k = k / 10
    				i = i + 1
    			WEND
    			q[1] = i + e * logBase - 1
    			q = SLICE(q)
    			dp = IIF(dp = NULL, FALSE, dp)
    			RESULT = finalise(q, IIF(dp, pr + q[1] + 1, pr), rm, more)
    			IFB external THEN
    				IF isNumeric = NULL THEN EXIT
    				RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			ELSE
    				RESULT = SLICE(RESULT)
    			ENDIF
    			EXIT
    		ENDIF
    	FEND
    	FUNCTION dividedToIntegerBy(x, y, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)
    		RESULT = finalise(divide(x, y, 0, 1, 1), CtorPrecision, CtorRounding)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION equals(x, y)
    		RESULT = cmp(x, y) = 0
    	FEND
    	FUNCTION floor(x, isnumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 3)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION greaterThan(x, y)
    		RESULT = cmp(x, y) > 0
    	FEND
    	FUNCTION greaterThanOrEqualTo(x, y)
    		k = cmp(x, y)
    		RESULT = VARTYPE(k = 1 OR k = 0, VAR_BOOLEAN)
    	FEND
    	FUNCTION hyperbolicCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		one = Constructor(1)
    		IFB !isFinite(x) THEN
    			RESULT = IIF(x[0], "INF", "NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = one
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		xd = SLICE(x, 2)
    		len = LENGTH(xd)
    		// Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1
    		// i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4))
    
    		// Estimate the optimum number of times to use the argument reduction.
    		// TODO? Estimation reused from cosine() and may not be optimal here.
    		IFB len < 32 THEN
    			k = GLOBAL.CEIL(len / 3)
    			n = "" + (1 / tinyPow(4, k))
    		ELSE
    			k = 16
    			n = "2.3283064365386962890625e-10"
    		ENDIF
    		x = taylorSeries(Ctor, 1, times(x, n), Constructor(1), TRUE)
    		// Reverse argument reduction
    		i = k
    		d8 = Constructor(8)
    		WHILE i > 0
    			i = i - 1
    			cosh2x = times(x, x, NULL)
    			x = times(cosh2x, d8, NULL)
    			x = minus(d8, x, NULL)
    			x = times(cosh2x, x, NULL)
    			x = minus(one, x, NULL)
    		WEND
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(x, CtorPrecision, CtorRounding, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION hyperbolicSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		xd = SLICE(x, 2)
    		len = LENGTH(xd)
    		IFB len < 3 THEN
    			x = taylorSeries(Ctor, 2, x, x, TRUE)
    		ELSE
    			// Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x))
    			// i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3))
    			// 3 multiplications and 1 addition
    
    			// Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x)))
    			// i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5)))
    			// 4 multiplications and 2 additions
    
    			// Estimate the optimum number of times to use the argument reduction.
    			k = 1.4 * GLOBAL.SQRT(len)
    			k = IIF(k > 16, 16, INT(k))
    			x = times(x, 1 / tinyPow(5, k), NULL)
    			x = taylorSeries(2, x, x, TRUE)
    			// Reverse argument reduction
    			d5 = Constructor(5)
    			d16 = Constructor(16)
    			d20 = Constructor(20)
    			WHILE k > 0
    				k = k - 1
    				sinh2x = times(x, x)
    				x = times(x, plus(d5, times(sinh2x, plus(times(d16, sinh2x), d20))))
    			WEND
    		ENDIF
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(x, pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION hyperbolicTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor(x[0])
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		CtorPrecision = pr + 7
    		CtorRounding = 1
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(divide(sinh(x), cosh(x), pr, rm))
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))		
    		k = cmp(absoluteValue(x), 1)
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB k <> -1 THEN
    			RESULT = IIF(k = 0, IIF(isNeg(x), getPi(Ctor, pr, rm), Constructor(0)), Constructor("NaN"))
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = times(getPi(Ctor, pr + 4, rm), 0.5, NULL)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3
    		CtorPrecision = pr + 6
    		CtorRounding = 1
    		x = asin(x)
    		halfPi = times(getPi(Ctor, pr + 4, rm), 0.5)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = minus(halfPi, x)
    	FEND
    	FUNCTION inverseHyperbolicCosine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB lte(x, 1) THEN
    			RESULT = Constructor(IIF(eq(x, 1), 0, "NaN"))
    			EXIT
    		ENDIF
    		IFB !isFinite(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = absoluteValue(x[1]), sd(x)
    		CtorPrecision = pr + large(array, 1) + 4
    		CtorRounding = 1
    		external = FALSE
    		x = plus(squareRoot(minus(times(x, x), "1")), x)
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = naturalLogarithm(x)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseHyperbolicSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) OR isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = absoluteValue(x[1]), sd(x)
    		CtorPrecision = pr + 2 * large(array, 1) + 6
    		CtorRounding = 1
    		external = FALSE
    		x = plus(squareRoot(plus(times(x, x), 1)), x)
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = naturalLogarithm(x)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseHyperbolicTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor("NaN")
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		IFB x[1] >= 0 THEN
    			RESULT = Constructor(IIF(eq(absoluteValue(x), 1), x[0] + "INF", IIF(isZero(x), x, "NaN")))
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		xsd = sd(x)
    		DIM array[] = xsd, pr
    		IFB large(array, 1) < 2 * (-1 * x[1]) - 1 THEN
    			RESULT = finalise(Constructor(x), pr, rm, TRUE)
    			EXIT
    		ENDIF
    		wpr = xsd - x[1]
    		CtorPrecision = wpr
    		x = divide(plus(x, 1, NULL), minus(Constructor(1), x, NULL), wpr + pr, 1)
    		CtorPrecision = pr + 4
    		CtorRounding = 1
    		x = naturalLogarithm(Constructor(x))
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = times(x, 0.5, NULL)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseSine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		k = cmp(THIS.abs(x), 1)
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB k <> -1 THEN
    			// |x| is 1
    			IFB k = 0 THEN
    				halfPi = times(getPi(Ctor, pr + 4, rm), 0.5)
    				halfPi[0] = x[0]
    				RESULT = halfPi
    			ELSE
    				// |x| > 1 or x is NaN
    				RESULT = Constructor("NaN")
    				EXIT
    			ENDIF
    		ENDIF
    		// TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6
    		CtorPrecision = pr + 6
    		CtorRounding = 1
    		tmp = squareRoot(minus(Constructor(1), times(x, x, NULL), NULL), NULL)
    		tmp = plus(tmp, 1, NULL)
    		x = div(x, tmp, NULL, NULL, NULL, NULL, NULL)
    		x = atan(x)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = times(x, 2, NULL)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION inverseTangent(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB !isFinite(x) THEN
    			IFB !x[0] THEN
    				RESULT = Constructor("NaN")
    				IF isNumeric = NULL THEN EXIT
    				RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    				EXIT
    			ENDIF
    			IFB pr + 4 <= PI_PRECISION THEN
    				r = times(getPi(Ctor, pr + 4, rm), 0.5)
    				r[0] = x[0]
    				RESULT = r
    				EXIT
    			ENDIF
    		ELSEIF isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ELSEIF eq(absoluteValue(x), 1) AND pr + 4 <= PI_PRECISION THEN
    			r = times(getPi(Ctor, pr + 4, rm), 0.25)
    			RESULT = r
    		ENDIF
    		wpr = pr + 10
    		CtorPrecision = wpr
    		CtorRounding = 1
    		// TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x);
    
    		// Argument reduction
    		// Ensure |x| < 0.42
    		// atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2)))
    		DIM array[] = 28, INT(wpr / LOG_BASE + 2)
    		k = small(array, 1)
    		i = k
    		WHILE i > 0
    			i = i - 1
    			tmp = times(x, x, NULL)
    			tmp = plus(tmp, 1, NULL)
    			tmp = squareRoot(tmp, NULL)
    			tmp = plus(tmp, 1, NULL)
    			x = div(x, tmp, NULL, NULL, NULL, NULL, NULL)
    		WEND
    		external = FALSE
    		j = CEIL(wpr / LOG_BASE)
    		n = 1
    		x2 = times(x, x, NULL)
    		r = Constructor(x)
    		px = x
    		// atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...
    		WHILE i <> -1
    			px = times(px, x2)
    			n = n + 2
    			tmp = div(px, n, NULL, NULL, NULL, NULL, NULL)
    			t = minus(r, div(px, n, NULL, NULL, NULL, NULL, NULL), NULL)
    			td = SLICE(t, 2)
    			px = times(px, x2, NULL)
    			n = n + 2
    			r = plus(t, div(px, n, NULL, NULL, NULL, NULL, NULL), NULL)
    			rd = SLICE(r, 2)
    			IFB UBound(rd) >= j THEN
    				i = j
    				WHILE i >= 0 AND rd[i] = td[i]
    					i = i - 1
    					IF i = -1 THEN BREAK
    				WEND
    			ENDIF
    		WEND
    		IF k <> 0 THEN r = times(r, POWER(2, k))
    		external = TRUE
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(r, CtorPrecision, CtorRounding, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION isFinite(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[1] <> NULL, TRUE, FALSE)
    	FEND
    	FUNCTION isInteger(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = VARTYPE(LENGTH(x) >= 3 AND GLOBAL.floor(x[1] / LOG_BASE) > LENGTH(x) - 2 - 2, VAR_BOOLEAN)
    	FEND
    	FUNCTION isNaN(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] = NULL, TRUE, FALSE)
    	FEND
    	FUNCTION isNegative(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] < 0, TRUE, FALSE)
    	FEND
    	FUNCTION isPositive(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = IIF(x[0] > 0, TRUE, FALSE)
    	FEND
    	FUNCTION isZero(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = VARTYPE(VARTYPE(x[2]) = 5 AND x[2] = 0, VAR_BOOLEAN)
    	FEND
    	FUNCTION lessThan(x, y)
    		RESULT = cmp(x, y) < 0
    	FEND
    	FUNCTION lessThanOrEqualTo(x, y)
    		RESULT = cmp(x, y) < 1
    	FEND
    	FUNCTION logarithm(x, base = NULL, isNumeric = FALSE)
    		arg = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		pr = CtorPrecision
    		rm = CtorRounding
    		guard = 5
    		// Default base is 10.
    		IFB base = NULL THEN
    			base = Constructor(10)
    			isBase10 = TRUE
    		ELSE
    			base = Constructor(base)
    			d = SLICE(base, 2)
    			// Return NaN if base is negative, or non-finite, or is 0 or 1.
    			IFB VAL(base[0]) < 0 OR LENGTH(d) >= 2 OR eq(base, 1) THEN
    				RESULT = Constructor("NaN")
    				EXIT
    			ENDIF
    			isBase10 = eq(base, 10)
    		ENDIF
    		d = SLICE(arg, 2)
    		// The result will have a non-terminating decimal expansion if base is 10 and arg is not an
    		// integer power of 10.
    		inf = FALSE
    		IFB isBase10 THEN
    			IFB LENGTH(d) > 1 THEN
    				inf = TRUE
    			ELSE
    				k = d[0]
    				WHILE k MOD 10 = 0
    					k = k / 10
    				WEND
    				inf = k <> 1
    			ENDIF
    		ENDIF
    		external = FALSE
    		sd = pr + guard
    		num = naturalLogarithm(arg, sd)
    		IFB isBase10 THEN
    			denominator = getLn10(Ctor, sd + 10)
    		ELSE
    			denominator = naturalLogarithm(base, sd)
    		ENDIF
    		// The result will have 5 rounding digits.
    		r = divide(num, denominator, sd, 1)
    		rd = SLICE(r, 2)
    		// If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000,
    		// calculate 10 further digits.
    		//
    		// If the result is known to have an infinite decimal expansion, repeat this until it is clear
    		// that the result is above or below the boundary. Otherwise, if after calculating the 10
    		// further digits, the last 14 are nines, round up and assume the result is exact.
    		// Also assume the result is exact if the last 14 are zero.
    		//
    		// Example of a result that will be incorrectly rounded:
    		// log[1048576](4503599627370502) = 2.60000000000000009610279511444746...
    		// The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it
    		// will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so
    		// the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal
    		// place is still 2.6.
    		k = pr
    		IFB checkRoundingDigits(rd, pr, rm) THEN
    			REPEAT
    				sd = sd + 10
    				num = naturalLogarithm(arg, sd)
    				denominator = IIF(isBase10, getLn10(Ctor, sd + 10), naturalLogarithm(base, sd))
    				r = divide(num, denominator, sd, 1)
    				rd = SLICE(r, 2)
    				IFB !inf THEN
    					// Check for 14 nines from the 2nd rounding digit, as the first may be 4.
    					IFB VAL(COPY(digitsToString(rd), k + 2, 14)) + 1 = 1E+14 THEN
    						r = finalise(r, pr + 1, 0)
    					ENDIF
    					BREAK
    				ENDIF
    				k = k + 10
    			UNTIL !(checkRoundingDigits(rd, k, rm))
    		ENDIF
    		external = TRUE
    		RESULT = finalise(r, pr, rm)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION minus(minuend, subtrahend, isnumeric = FALSE)
    		x = IIF(VARTYPE(minuend) < 8192, Constructor(minuend), minuend)
    		y = IIF(VARTYPE(subtrahend) < 8192, Constructor(subtrahend), subtrahend)
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// If either is not finite...
    		IFB !xIsNum OR !yIsNum THEN
    			// Return NaN if either is NaN
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return y negated if x is finite and y is ±Infinity.
    			// xが有限値でyが無限値ならばyを否定して返す
    			ELSEIF !xIsInf AND yIsInf THEN
    				y[0] = -1 * y[0]
    				RESULT = finiteToString(y)
    			// Return x if y is finite and x is ±Infinity.
    			// yが有限値でxが無限値ならばxを返す
    			ELSEIF yIsNum AND xIsInf THEN
    				RESULT = finiteToString(x)
    			// Return x if both are ±Infinity with different signs.
    			// 両方とも±∞で符号が違うならばxを返す
    			ELSEIF x[0] <> y[0] AND xIsInf AND yIsInf THEN
    				RESULT = finiteToString(x)
    			// Return NaN if both are ±Infinity with the same sign.
    			// 両方とも±∞で符号が同じならばNaNを返す
    			ELSEIF x[0] = y[0] AND xIsInf AND yIsInf THEN
    				RESULT = "NaN"
    			ENDIF
    			EXIT
    		ENDIF
    		// If signs differ...
    		IFB x[0] <> y[0] THEN
    			y[0] = -1 * y[0]
    //			x = finalise(x, pr, rm)
    //			y = finalise(y, pr, rm)
    			RESULT = Decimal.plus(x, y, isnumeric)
    			EXIT
    		ENDIF
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		pr = CtorPrecision
    		rm = CtorRounding
    		// If either is zero...
    		IFB !xd[0] OR !yd[0] THEN
    			// Return y negated if x is zero and y is non-zero.
    			IFB yd[0] THEN
    				y[0] = -1 * y[0]
    			// Return x if y is zero and x is non-zero.
    			ELSEIF xd[0] THEN
    				y = x
    			// Return zero if both are zero.
    			// From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity.
    			ELSE
    				RESULT = 0
    				EXIT
    			ENDIF
    			RESULT = IIF(external, finalise(y, pr, rm), y)
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// Calculate base 1e7 exponents.
    		e = GLOBAL.floor(y[1] / LOG_BASE)
    		xe = GLOBAL.floor(x[1] / LOG_BASE)
    		k = xe - e
    		// If base 1e7 exponents differ...
    		IFB k <> 0 THEN
    			xLTy = k < 0
    			IFB xLTy THEN
    				d = SLICE(xd)
    				k = -1 * k
    				len = LENGTH(yd)
    			ELSE
    				d = SLICE(yd)
    				e = xe
    				len = LENGTH(xd)
    			ENDIF
    			DIM tmp[] = CEIL(pr / LOG_BASE), len
    			i = CALCARRAY(tmp, CALC_MAX) + 2
    			IFB k > i THEN
    				k = i
    				RESIZE(d, 1)
    			ENDIF
    			// Prepend zeros to equalise exponents.
    			arrayReverse(d)
    			i = k - 1
    			WHILE i >= 0
    				arrayPush(d, 0)
    				i = i - 1
    			WEND
    			arrayReverse(d)
    			// copy
    			IFB xLTy THEN
    				xd = SLICE(d)
    			ELSE
    				yd = SLICE(d)
    			ENDIF
    		ELSE
    			// Check digits to determine which is the bigger number.
    			i = LENGTH(x) - 2
    			len = LENGTH(y) - 2
    			xLTy = i < len
    			IF xLTy <> 0 THEN len = i
    			FOR i = 0 TO len - 1
    				IFB VAL(xd[i]) <> VAL(yd[i]) THEN
    					xLTy = VAL(xd[i]) < VAL(yd[i])
    					BREAK
    				ENDIF
    			NEXT
    			k = 0
    		ENDIF
    		IFB xLTy <> 0 THEN
    			d = SLICE(xd)
    			xd = SLICE(yd)
    			yd = SLICE(d)
    			y[0] = -1 * y[0]
    		ENDIF
    		len = LENGTH(xd)
    		// Append zeros to `xd` if shorter.
    		// Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length.
    		i = LENGTH(yd) - len
    		WHILE i > 0
    			arrayPush(xd, 0)
    			len = len + 1
    			i = i - 1
    		WEND
    		// Subtract yd from xd.
    		i = LENGTH(yd)
    		WHILE i > k
    			i = i - 1
    			IFB VAL(xd[i]) < VAL(yd[i]) THEN
    				j = i
    				j = j - 1
    				WHILE VARTYPE(j+1, VAR_BOOLEAN) AND VARTYPE(xd[j] = 0, VAR_BOOLEAN)
    					xd[j] = BASE - 1
    					j = j - 1
    				WEND
    				xd[j] = VAL(xd[j] )- 1
    				xd[i] = VAL(xd[i]) + BASE
    			ENDIF
    			xd[i] = VAL(xd[i]) - VAL(yd[i])
    		WEND
    		// Remove trailing zeros.
    		len = LENGTH(xd)
    		WHILE len > 0
    			IFB xd[len - 1] = 0 THEN
    				arrayPop(xd)
    				len = LENGTH(xd)
    			ELSE
    				BREAK
    			ENDIF
    		WEND
    		// Remove leading zeros and adjust exponent accordingly.
    		IFB LENGTH(xd) <> 0 THEN
    			WHILE xd[0] = 0
    				arrayShift(xd)
    				e = e - 1
    			WEND
    		ENDIF
    		// Zero?
    		IFB LENGTH(xd) = 0 THEN
    			RESULT = Constructor(IIF(rm=3, -0, 0))
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))		
    			EXIT
    		ENDIF
    		RESIZE(y, 1)
    		arrayMerge(y, xd)
    		y[1] = getBase10Exponent(xd, e)
    		IFB external THEN
    			RESULT = finalise(y, pr, rm)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION modulo(x, y)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)		
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)		
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Return NaN if x is ±Infinity or NaN, or y is NaN or ±0.
    		IFB (xIsInf OR xIsNaN) OR (yIsNaN OR yIsZero) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		// Prevent rounding of intermediate calculations.
    		external = FALSE
    		IFB CtorModulo = 9 THEN
    			// Euclidian division: q = sign(y) * floor(x / abs(y))
    			// result = x - q * y    where  0 <= result < abs(y)
    			q = divide(x, absoluteValue(y), 0, 3, 1)
    			q[0] = q[0] * y[0]
    		ELSE
    			q = divide(x, y, 0, CtorModulo, 1)
    		ENDIF
    		q = times(q, y)
    		external = TRUE
    		RESULT = minus(x, q)
    	FEND
    	FUNCTION negated(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)		
    		x[0] = -1 * x[0]
    		RESULT = finalise(x)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION plus(augend, addend, isnumeric = FALSE)
    		x = IIF(VARTYPE(augend) < 8192, Constructor(augend), augend)
    		y = IIF(VARTYPE(addend) < 8192, Constructor(addend), addend)
    		DIM xIsNum = CHKNUM(x[1])
    		DIM yIsNum = CHKNUM(y[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// If either is not finite...
    		IFB !xIsNum OR !yIsNum THEN
    			// Return NaN if either is NaN.
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return x if y is finite and x is ±Infinity.
    			// yが有限でxが±∞ならばxを返す
    			ELSEIF yIsNum AND xIsInf THEN
    				RESULT = finiteToString(x)//IIF(isNegative(x), "-", "") + "INF"
    			// Return x if both are ±Infinity with the same sign.
    			// 両方とも±∞で符号が同じならばxを返す
    			ELSEIF x[0] = y[0] AND xIsInf AND yIsInf THEN
    				RESULT = finiteToString(x)//IIF(isNegative(x), "-", "") + "INF"
    			// Return NaN if both are ±Infinity with different signs.
    			// 両方とも±∞で符号が違うならばNaNを返す
    			ELSEIF x[0] <> y[0] AND xIsInf AND yIsInf THEN
    				RESULT = "NaN"
    			// Return y if x is finite and y is ±Infinity.
    			// xが有限でyが±∞ならばyを返す
    			ELSEIF xIsNum AND yIsInf THEN
    				RESULT = "INF"//finiteToString(y)//IIF(isNegative(y), "-", "") + "INF"//toString(finalise(y, pr, rm))
    			ENDIF
    			RESULT = Constructor(RESULT)
    			EXIT
    		ENDIF
    		// If signs differ...
    		IFB x[0] <> y[0] THEN
    			y[0] = -1 * y[0]
    			RESULT = Decimal.minus(x, y, isnumeric)
    			EXIT
    		ENDIF
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		pr = CtorPrecision
    		rm = CtorRounding
    		// If either is zero...
    		IFB !xd[0] OR !yd[0] THEN
    			IF !yd[0] THEN y = x
    			RESULT = IIF(external, finalise(y, pr, rm), y)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		// Calculate base 1e7 exponents.
    //		value = x[1]/LOG_BASE
    //		k = INT(value) + IIF(value<0 AND value <> INT(value), -1, 0)
    //		value = y[1]/LOG_BASE
    //		e = INT(value) + IIF(value<0 AND value- INT(value) <> 0, -1, 0)
    		k = GLOBAL.floor(x[1] / LOG_BASE)
    		e = GLOBAL.floor(y[1] / LOG_BASE)
    		i = k - e
    		// If base 1e7 exponents differ
    		IFB i <> 0 THEN
    			IFB i < 0 THEN
    				DIM d = SLICE(xd)
    				i = -1 * i
    				len = LENGTH(yd)
    				flg = TRUE
    			ELSE
    				d = SLICE(yd)
    				e = k
    				len = LENGTH(xd)
    				flg = FALSE
    			ENDIF
    			// Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1.
    			k = CEIL(pr/LOG_BASE)
    			len = IIF(k > len, k + 1, len + 1)
    //			i = LENGTH(yd)
    //TEXTBLOCK
    			IFB i > len THEN
    				i = len
    				RESIZE(d, 1)
    			ENDIF
    //ENDTEXTBLOCK
    			// Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts.
    			arrayReverse(d)
    			WHILE i > 0
    				arrayPush(d, 0)
    				i = i - 1
    			WEND
    			arrayReverse(d)
    			// copy
    			IFB flg THEN
    				xd = SLICE(d)
    			ELSE
    				yd = SLICE(d)
    			ENDIF
    		ENDIF
    		len = LENGTH(xd)
    		i = LENGTH(yd)
    		// If yd is longer than xd, swap xd and yd so xd points to the longer array.
    		IFB len - i < 0 THEN
    			i = len
    			d = SLICE(yd)
    			yd = SLICE(xd)
    			xd = SLICE(d)
    		ENDIF
    		// Only start adding at yd.length - 1 as the further digits of xd can be left as they are.
    		DIM carry = 0
    		WHILE i > 0
    			i = i - 1
    			xd[i] = VAL(xd[i]) + VAL(yd[i]) + carry
    			carry = INT(xd[i] / BASE)
    			xd[i] = xd[i] MOD BASE
    		WEND
    		IFB carry THEN
    			// xd.unshift(carry)
    			arrayUnshift(xd, carry)
    			e = e + 1
    		ENDIF
    		// Remove trailing zeros.
    		// No need to check for zero, as +x + +y != 0 && -x + -y != 0		RESULT = ERR_VALUE
    		len = LENGTH(xd)
    		WHILE len > 0
    			IFB xd[len - 1] = 0 THEN
    				arrayPop(xd)
    				len = LENGTH(xd)
    			ELSE
    				BREAK
    			ENDIF
    		WEND
    		RESIZE(y, 1)
    		arrayMerge(y, xd)
    		y[1] = getBase10Exponent(xd, e)
    		IFB external THEN
    			RESULT = finalise(y, pr, rm)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION precision(x, z = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB LENGTH(xd) THEN
    			k = getPrecision(xd)
    			IFB z <> NULL THEN
    				IF z AND x[1] + 1 > k THEN k = x[1] + 1
    			ENDIF
    		ELSE
    			k = "NaN"
    		ENDIF
    		RESULT = k
    	FEND
    	FUNCTION round(x, isNumeric = FALSE)
    		x = Constructor(x)
    		RESULT = finalise(x, x[1] + 1, CtorRounding)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION sine(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB !isFinite(x) THEN
    				RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))		
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		DIM array[] = x[1], sd(x)
    		CtorPrecision = pr + CALCARRAY(array, CALC_MAX) + LOG_BASE
    		CtorRounding = 1
    		x = sine2(Ctor, toLessThanHalfPi(Ctor, x))
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant > 2, neg(x), x), pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))		
    	FEND
    	FUNCTION squareRoot(x, isNumeric = FALSE)
    		x = Constructor(x)
    		d = SLICE(x, 2)
    		e = x[1]
    		s = x[0]
    		DIM xIsNum = CHKNUM(x[1])
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		// Negative/NaN/Infinity/zero?
    		IFB s <> 1 OR xIsNaN OR xIsInf OR xIsZero THEN
    			RESULT = Constructor(IIF(!s OR s < 0 AND (!d OR d[0]), "NaN", IIF(d, x, 1 / 0)))
    		ENDIF
    		external = FALSE
    		// Initial estimate.
    		n = finiteToString(x)
    //		s = GLOBAL.SQRT(n)
    		DIM SC = CREATEOLEOBJ("ScriptControl")
    		SC.Language = "JScript"
    		s = SC.Eval("Math.sqrt(" + n + ").toPrecision(16)")
    
    		//s = 4.898979485566356//GLOBAL.SQRT(VAL(JOIN(d, "")))
    		// Math.sqrt underflow/overflow?
    		// Pass x to Math.sqrt as integer, then adjust the exponent of the result.
    		IFB s = 0 OR s = 1 / 0 THEN
    			n = digitsToString(d)
    			IF (LENGTH(n) + e) MOD 2 = 0 THEN n = n + "0"
    			s = GLOBAL.SQRT(n)
    			e = floor((e + 1) / 2) - (e < 0 OR e MOD 2)
    			IFB s = 1 / 0 THEN
    				n = "5E" + e
    			ELSE
    				n = toExponential(s)
    				n = SLICE(n, 1, POS("e", n) + 1) + e
    			ENDIF
    			r = Constructor(n)
    		ELSE
    			r = Constructor("" + s)
    		ENDIF
    		e = CtorPrecision
    		sd = e + 3
    		// Newton-Raphson iteration.
    		rep = FALSE
    		WHILE TRUE
    			t = r
    			td = SLICE(t, 2)
    //			tmp = divide(x, t, sd + 2, 1)
    //			tmp = plus(t, tmp)
    //			r = times(tmp, 0.5)
    			r = times(plus(t, divide(x, t, sd + 2, 1)), 0.5)
    			rd = SLICE(r, 2)
    			// TODO? Replace with for-loop and checkRoundingDigits.
    			n = digitsToString(rd)
    			m = COPY(digitsToString(td), 1, sd)
    			IFB m = COPY(n, 1, sd) THEN
    				n = COPY(n, sd - 3 + 1, 4)
    				// The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or
    				// 4999, i.e. approaching a rounding boundary, continue the iteration.
    				IFB n = "9999" OR !rep AND n = "4999" THEN
    					// On the first iteration only, check to see if rounding up gives the exact result as the
    					// nines may infinitely repeat.
    					IFB !rep THEN
    						finalise(t, e + 1, 0)
    						IFB eq(times(t, t), x) THEN
    							r = t
    							BREAK
    						ENDIF
    					ENDIF
    					sd = sd + 4
    					rep = 1
    				ELSE
    					// If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result.
    					// If not, then there are further digits and m will be truthy.
    					IFB n <> 0 OR COPY(n, 2) <> "0" AND COPY(n, 1, 1) = "5" THEN
    						// Truncate to the first rounding digit.
    						finalise(r, e + 1, 1)
    						m = !eq(times(r, r), x)
    					ENDIF
    					BREAK
    				ENDIF
    			ENDIF
    		WEND
    		external = TRUE
    		RESULT = finalise(r, e, CtorRounding, m)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION tangent(x, isNumeric = FALSE)//, isHelper = FALSE)
    		x = Constructor(x)
    		IFB !isFinite(x) THEN
    			RESULT = Constructor("NaN")
    			EXIT
    		ENDIF
    		IFB isZero(x) THEN
    			RESULT = Constructor(x)
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		CtorPrecision = pr + 10
    		CtorRounding = 1
    		x = sine(x, NULL)
    		x[0] = 1
    		tmp = times(x, x, NULL)
    		tmp = minus(1, tmp, NULL)
    		tmp = THIS.sqrt(tmp, NULL)
    		x = divide(x, tmp)
    //		x = divide(x, squareRoot(minus(Constructor(1), times(x, x))), pr + 10, 0)
    		CtorPrecision = pr
    		CtorRounding = rm
    		RESULT = finalise(IIF(CtorQuadrant = 2 OR CtorQuadrant = 4, neg(x), x), pr, rm, TRUE)
    		IF isNumeric = NULL THEN EXIT
    		RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION times(multiplicand, multiplier, isnumeric = FALSE)
    		x = IIF(VARTYPE(multiplicand) < 8192, Constructor(multiplicand), multiplicand)
    		y = IIF(VARTYPE(multiplier) < 8192, Constructor(multiplier), multiplier)
    		xd = SLICE(x, 2)
    		yd = SLICE(y, 2)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		IFB xIsNaN OR yIsNan THEN
    			y[0] = "NaN"
    		ELSE
    			y[0] = y[0] * x[0]
    		ENDIF
    		// If either is NaN, ±Infinity or ±0...
    		IFB (xIsNaN OR yIsNaN) OR (xIsInf OR yIsInf) OR (xIsZero OR yIsZero) THEN
    			// Return NaN if either is NaN.
    			// どちらかがNaNならばNaNを返す
    			IFB xIsNaN OR yIsNaN THEN
    				RESULT = "NaN"
    			// Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity.
    			// xが±0、yが±無限大、もしくはyが±0、xが±無限大ならばNaNを返す
    			ELSEIF (xIsZero AND yIsInf) OR (yIsZero AND xIsInf) THEN
    				RESULT = "NaN"
    			// Return ±Infinity if either is ±Infinity.
    			// どちらかが±無限大ならば±無限大を返す
    			ELSEIF xIsInf OR yIsInf THEN
    				RESULT = "INF"
    			// Return ±0 if either is ±0.
    			// どちらかが±0ならば±0を返す
    			ELSEIF xIsZero OR yIsZero THEN
    				RESULT = "0"
    			ENDIF
    			RESULT = Constructor(RESULT)
    			IF isNumeric = NULL THEN EXIT
    			RESULT = IIF(isNumeric, toNumber(RESULT), toString(RESULT))
    			EXIT
    		ENDIF
    		e = GLOBAL.floor(x[1] / LOG_BASE) + GLOBAL.floor(y[1] / LOG_BASE)
    		xdL = LENGTH(xd)
    		ydL = LENGTH(yd)
    		// Ensure xd points to the longer array.
    		IFB xdL < ydL THEN
    			r = SLICE(xd)
    			xd = SLICE(yd)
    			yd = SLICE(r)
    			rL = xdL
    			xdL = ydL
    			ydL = rL
    		ENDIF
    		// Initialise the result array with zeros.
    		DIM r[-1]
    		rL = xdL + ydL
    		i = rL
    		WHILE i > 0
    			arrayPush(r, 0)
    			i = i - 1
    		WEND
    		// Multiply!
    		i = ydL
    		WHILE i > 0
    			i = i - 1
    			carry = 0
    			k = xdL + i
    			WHILE k > i
    				t = VAL(r[k]) + VAL(yd[i]) * VAL(xd[k-i-1]) + carry
    				r[k] = t MOD BASE
    				k = k - 1
    				carry = INT(t / BASE)
    			WEND
    			r[k] = (r[k] + carry) MOD BASE
    		WEND
    		// Remove trailing zeros.
    		rL = rL - 1
    		WHILE r[rL] = 0
    			arrayPop(r)
    			rL = rL - 1
    		WEND
    		IFB carry <> 0 THEN
    			e = e + 1
    		ELSE
    			arrayShift(r)
    		ENDIF
    		RESIZE(y, 1)
    		arrayMerge(y, r)
    		y[1] = getBase10Exponent(r, e)
    		IFB external THEN
    			RESULT = finalise(y, CtorPrecision, CtorRounding)
    			IF isnumeric = NULL THEN EXIT
    			RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    		ELSE
    			RESULT = SLICE(y)
    		ENDIF
    	FEND
    	FUNCTION toBinary(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 2, sd, rm)
    	FEND
    	FUNCTION toDecimalPlaces(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			RESULT = SLICE(x)
    			RESULT = toString(RESULT)
    			EXIT
    		ENDIF
    		checkInt32(dp, 0, MAX_DIGITS)
    		IFB rm = NULL THEN
    			rm = CtorRounding
    		ELSE
    			checkInt32(rm, 0, 8)
    		ENDIF
    		RESULT = finiteToString(finalise(x, dp + x[1] + 1, rm))
    	FEND
    	FUNCTION toExponential(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			str = finiteToString(x, TRUE)
    		ELSE
    			checkInt32(dp, 0, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding 
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			x = finalise(Constructor(x), dp + 1, rm)
    			str = finiteToString(x, TRUE, dp + 1)
    		ENDIF
    		RESULT = IIF(isNeg(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toFixed(x, dp = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB dp = NULL THEN
    			str = finiteToString(x)
    		ELSE
    			checkInt32(dp, 0, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			y = finalise(Constructor(x), dp + x[1] + 1, rm)
    			str = finiteToString(y, FALSE, dp + y[1] + 1)
    		ENDIF		
    		// To determine whether to add the minus sign look at the value before it was rounded,
    		// i.e. look at `x` rather than `y`.
    		RESULT = IIF(isNeg(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toFraction(x, maxD = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB LENGTH(xd) = 0 THEN
    			RESULT = Constructor(x)
    		ENDIF
    		d0 = Constructor(1)
    		n1 = d0
    		n0 = Constructor(0)
    		d1 = n0	
    		d = Constructor(d1)
    		d[1] = getPrecision(xd) - x[1] - 1
    		e = d[1]
    		k = e MOD LOG_BASE
    		d[2] = POW(10, IIF(k < 0, LOG_BASE + k, k))
    		IFB maxD = NULL THEN
    			// d is 10**e, the minimum max-denominator needed.
    			maxD = IIF(e > 0, d, n1)
    		ELSE
    			n = Constructor(maxD)
    			IFB !isInt(n) <> 0 OR lt(n, n1) THEN
    				RESULT = ERR_VALUE
    				EXIT
    			ENDIF
    			maxD = IIF(gt(n, d), IIF(e > 0, d, n1), n)
    		ENDIF
    		external = FALSE
    		n = Constructor(digitsToString(xd))
    		pr = CtorPrecision
    		e = LENGTH(xd) * LOG_BASE * 2
    		CtorPrecision = e
    		WHILE TRUE
    			q = divide(n, d, 0, 1, 1)
    			d2 = plus(d0, times(q, d1), NULL)
    			IF cmp(d2, maxD) = 1 THEN BREAK
    			d0 = d1
    			d1 = d2
    			d2 = n1
    			n1 = plus(n0, times(q, d2), NULL)
    			n0 = d2
    			d2 = d
    			d = minus(n, times(q, d2))
    			n = d2
    		WEND
    		d2 = divide(minus(maxD, d0), d1, 0, 1, 1)
    		n0 = plus(n0, times(d2, n1), NULL)
    		d0 = plus(d0, times(d2, d1), NULL)
    		n1[0] = x[0]
    		n0[0] = n1[0]
    		// Determine which fraction is closer to x, n0/d0 or n1/d1?
    		tmp1 = divide(n1, d1, e, 1)
    		tmp1 = minus(tmp1, x)
    		tmp1 = THIS.abs(tmp1)
    		tmp2 = divide(n0, d0, e, 1)
    		tmp2 = minus(tmp2, x)
    		tmp2 = THIS.abs(tmp2)
    		DIM r[-1]
    		IFB cmp(tmp1, tmp2) < 1 THEN
    			arrayPush(r, finiteToString(n1))
    			arrayPush(r, finiteToString(d1))
    		ELSE
    			arrayPush(r, finiteToString(n0))
    			arrayPush(r, finiteToString(d0))
    		ENDIF
    		CtorPrecision = pr
    		external = TRUE
    		RESULT = SLICE(r)
    	FEND
    	FUNCTION toHexadecimal(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 16, sd, rm)
    	FEND
    	FUNCTION toNearest(x, y = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		IFB y = NULL THEN
    			// If x is not finite, return x.
    			IFB !LENGTH(xd) THEN
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			y = Constructor(1)
    			rm = CtorRounding
    		ELSE
    			y = Constructor(y)
    			yd = SLICE(y, 2)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			// If x is not finite, return x if y is not NaN, else NaN.
    			IFB !LENGTH(xd) THEN
    				RESULT = IIF(y[0], x, y)
    			ENDIF
    			// If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN.
    			IFB !LENGTH(yd) THEN
    				IF y[0] THEN y[0] = x[0]
    				RESULT = SLICE(y)
    			ENDIF
    			// If y is not zero, calculate the nearest multiple of y to x.
    			IFB yd[0] THEN
    				external = FALSE
    				x = times(divide(x, y, 0, rm, 1), y)
    				external = TRUE
    				finalise(x)
    			ELSE
    				// If y is zero, return zero with the sign of x.
    				y[0] = x[0]
    				x = y
    			ENDIF
    		ENDIF
    		RESULT = SLICE(x)
    		RESULT = .toNumber(RESULT)
    	FEND
    	FUNCTION toNumber(x)
    		str = finiteToString(x)
    		RESULT = VAL(IIF(isNegative(x), "-" + str, str))
    	FEND
    	FUNCTION toOctal(x, sd = NULL, rm = NULL)
    		RESULT = toStringBinary(x, 8, sd, rm)
    	FEND
    	FUNCTION toPower(base, exponent, isnumeric = FALSE)
    		DIM x = Constructor(base)
    		DIM y = Constructor(exponent)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		DIM yn = VAL(exponent)
    		DIM xIsZero = x[0] = 1 AND x[1] = 0 AND x[2] = 0
    		DIM yIsZero = y[0] = 1 AND y[1] = 0 AND y[2] = 0
    		DIM xIsInf = x[0] <> NULL AND x[1] = NULL AND !x[2]
    		DIM yIsInf = y[0] <> NULL AND y[1] = NULL AND !y[2]
    		DIM xIsNaN = x[0] = NULL AND x[1] = NULL AND x[2] = FALSE
    		DIM yIsNaN = y[0] = NULL AND y[1] = NULL AND y[2] = FALSE
    		// Either ±Infinity, NaN or ±0?
    		// どちらかが±Infinity、NaNもしくは±0
    		IFB (xIsInf OR yIsInf) OR (xIsNaN OR yIsNaN) OR (xIsZero OR yIsZero) THEN
    			RESULT = POWER(base, exponent)
    			EXIT
    		ENDIF
    		IFB base = "1" THEN
    			RESULT = x
    			EXIT
    		ENDIF
    		pr = CtorPrecision
    		rm = CtorRounding
    		IFB exponent = "1" THEN
    			RESULT = finalise(x, pr, rm)
    			EXIT
    		ENDIF
    		// y exponent
    		e = GLOBAL.floor(y[1]/LOG_BASE)
    		// If y is a small integer use the 'exponentiation by squaring' algorithm.
    		DIM k = IIF(yn < 0, -1 * yn, yn)
    		IFB e >= LENGTH(y) - 2 - 1 AND k <= MAX_SAFE_INTEGER THEN
    			DIM r = intPow(Ctor, x, k, pr)
    			RESULT = IIF(VAL(y[0]) < 0, dividedBy("1", r), toString(finalise(r, pr, rm)))
    			EXIT
    		ENDIF
    		DIM s = x[0]
    		// if x is negative
    		IFB s < 0 THEN
    			// if y is not an integer
    			IFB e < LENGTH(y) - 2 - 1 THEN
    				RESULT = "NaN"
    				EXIT
    			ENDIF
    			// Result is positive if x is negative and the last digit of integer y is even.
    			IF (y[e+2] AND 1) = 0 THEN s = 1
    			// if x.eq(-1)
    			IFB x[1] = 0 AND x[2] = 1 AND LENGTH(x) - 2 = 1 THEN
    				x[0] = s
    				RESULT = x
    				EXIT
    			ENDIF
    		ENDIF
    		// Estimate result exponent.
    		// x^y = 10^e,  where e = y * log10(x)
    		// log10(x) = log10(x_significand) + x_exponent
    		// log10(x_significand) = ln(x_significand) / ln(10)
    		xd = SLICE(x, 2)
    		k = POWER(digitsToString(xd), yn)
    		IFB k = 0 OR !isFinite(Constructor(k)) THEN
    			e = floor(yn * (LN("0." + digitsToString(xd)) / VAL(LN10) + VAL(x[1]) + 1))
    		ELSE
    			e = Constructor(k)[1]
    		ENDIF
    		// Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1.
    		// Overflow/underflow?
    		IFB e > maxE + 1 OR e < minE - 1 THEN
    			IFB e > 0 THEN
    				RESULT = IIF(s >= 0, "INF", "-INF")
    			ELSE
    				RESULT = "0"
    			ENDIF
    			EXIT
    		ENDIF
    		external = FALSE
    		x[0] = 1
    		rounding = x[0]
    		// Estimate the extra guard digits needed to ensure five correct rounding digits from
    		// naturalLogarithm(x). Example of failure without these extra digits (precision: 10):
    		// new Decimal(2.32456).pow('2087987436534566.46411')
    		// should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815
    		DIM array[] = 12, LENGTH(e)
    		k = small(array, 1)
    		// r = x^y = exp(y*ln(x))
    		r = naturalExponential(times(y, naturalLogarithm(x, pr + k)), pr)
    		rd = SLICE(r, 2)
    		// r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40)
    		IFB LENGTH(rd) THEN
    			// Truncate to the required precision plus five rounding digits.
    			r = finalise(r, pr + 5, 1)
    			// If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate
    			// the result.
    			IFB checkRoundingDigits(rd, pr, rm) THEN
    				e = pr + 10
    				// Truncate to the increased precision plus five rounding digits.
    				r = finalise(naturalExponential(times(y, naturalLogarithm(x, e + k)), e), e + 5, 1)
    				// Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9).
    				IFB COPY(digitsToString(rd), pr + 1 + 1, pr + 15 + 1) + 1 = 1E+14 THEN
    					r = finalise(r, pr + 1, 0)
    				ENDIF
    			ENDIF
    		ENDIF
    		r[0] = s
    		external = TRUE
    		CtorRounding = rm
    		RESULT = finalise(r, pr, rm)
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION toPrecision(x, sd = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB sd = NULL THEN
    			str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		ELSE
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN 
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    			x = finalise(Constructor(x), sd, rm)
    			str = finiteToString(x, sd <= x[1] OR x[1] <= toExpNeg, sd)
    		ENDIF
    		RESULT = IIF(isNeg(x) AND isZero(x), "-" + str, str)
    	FEND
    	FUNCTION toSignificantDigits(x, sd = NULL, rm = NULL)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		IFB sd = NULL THEN
    			sd = CtorPrecision
    			rm = CtorRounding
    		ELSE
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    		ENDIF
    		RESULT = toString(finalise(Constructor(x), sd, rm))
    	FEND
    	FUNCTION toString(x)
    		str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		RESULT = IIF(isNegative(x) AND !isZero(x), "-" + str, str)
    	FEND
    	FUNCTION truncated(x, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		RESULT = finalise(x, x[1] + 1, 1)
    		IF isnumeric = NULL THEN EXIT
    		RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    	FEND
    	FUNCTION valueOf(x)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		str = finiteToString(x, x[1] <= toExpNeg OR x[1] >= toExpPos)
    		RESULT = IIF(isNeg(x), "-" + str, str)
    	FEND
    	//////////////////////////////
    	// 短縮形
    	//////////////////////////////
    	FUNCTION abs(x)
    		RESULT = absoluteValue(x)
    	FEND
    	FUNCTION acos(x)
    		RESULT = inverseCosine(x)
    	FEND
    	FUNCTION acosh(x)
    		RESULT = inverseHyperbolicCosine(x)
    	FEND
    	FUNCTION asin(x)
    		RESULT = inverseSine(x)
    	FEND
    	FUNCTION asinh(x)
    		RESULT = inverseHyperbolicSine(x)
    	FEND
    	FUNCTION atan(x)
    		RESULT = inverseTangent(x)
    	FEND	
    	FUNCTION atanh(x)
    		RESULT = inverseHyperbolicTangent(x)
    	FEND
    	FUNCTION add(augend, addend, isnumeric = FALSE)
    		RESULT = plus(augend, addend, isnumeric)
    	FEND
    	FUNCTION calc(str, pr = 20, rm = 4)
    		RESULT = calculate(str, pr, rm)
    	FEND
    	FUNCTION cbrt(x)
    		RESULT = cubeRoot(x)
    	FEND
    	FUNCTION clamp(x, min, max)
    		RESULT = clampedTo(x, min, max)
    	FEND
    	FUNCTION cmp(x, y)
    		RESULT = comparedTo(x, y)
    	FEND
    	FUNCTION cos(x)
    		RESULT = cosine(x)
    	FEND
    	FUNCTION cosh(x, isNumeric = FALSE)
    		RESULT = hyperbolicCosine(x, isNumeric)
    	FEND
    	FUNCTION divide(dividend, divisor, pr = 20, rm = 4, dp = NULL, _base = NULL, isnumeric = FALSE)
    		RESULT = dividedBy(dividend, divisor, pr, rm, dp, _base, isnumeric)
    	FEND
    	FUNCTION div(dividend, divisor, pr = 20, rm = 4, dp = NULL, _base = NULL, isnumeric = FALSE)
    		RESULT = dividedBy(dividend, divisor, pr, rm, dp, _base, isnumeric)
    	FEND
    	FUNCTION divToInt(x, y)
    		RESULT = dividedToIntegerBy(x, y)
    	FEND
    	FUNCTION dp(x)
    		RESULT = decimalPlaces(x)
    	FEND
    	FUNCTION eq(x, y)
    		RESULT = equals(x, y)
    	FEND
    	FUNCTION exp(x)
    		RESULT = naturalExponential(x)
    	FEND
    	FUNCTION gt(x, y)
    		RESULT = greaterThan(x, y)
    	FEND
    	FUNCTION gte(x, y)
    		RESULT = greaterThanOrEqualTo(x, y)
    	FEND
    	FUNCTION isInt(x)
    		RESULT = isInteger(x)
    	FEND
    	FUNCTION isNeg(x)
    		RESULT = isNegative(x)
    	FEND
    	FUNCTION isPos(x)
    		RESULT = isPositive(x)
    	FEND
    	FUNCTION ln(x)
    		RESULT = naturalLogarithm(x)
    	FEND
    	FUNCTION log(arg, base)
    		RESULT = logarithm(arg, base)
    	FEND
    	FUNCTION lt(x, y)
    		RESULT = lessThan(x, y)
    	FEND
    	FUNCTION lte(x, y)
    		RESULT = lessThanOrEqualTo(x, y)
    	FEND
    	FUNCTION mod(x, y)
    		RESULT = modulo(x, y)
    	FEND
    	FUNCTION mul(multiplicand, multiplier, isnumeric = FALSE)
    		RESULT = times(multiplicand, multiplier, isnumeric)
    	FEND
    	FUNCTION neg(x)
    		RESULT = negated(x)
    	FEND
    	FUNCTION pow(base, exponent)
    		RESULT = toPower(base, exponent)
    	FEND
    	FUNCTION sd(x, z = NULL)
    		RESULT = precision(x, z)
    	FEND
    	FUNCTION sin(x)
    		RESULT = sine(x)
    	FEND
    	FUNCTION sinh(x, isNumeric = FALSE)
    		RESULT = hyperbolicSine(x, isNumeric)
    	FEND
    	FUNCTION sqrt(x, isNumeric = FALSE)
    		RESULT = squareRoot(x, isNumeric)
    	FEND
    	FUNCTION sub(minuend, subtrahend, isnumeric = FALSE)
    		RESULT = minus(minuend, subtrahend, isnumeric)
    	FEND
    	FUNCTION tan(x)
    		RESULT = tangent(x)
    	FEND
    	FUNCTION tanh(x)
    		RESULT = hyperbolicTangent(x)
    	FEND
    	//////////////////////////////
    	// ヘルパー関数
    	//////////////////////////////
    	FUNCTION digitsToString(d)
    		indexOfLastWord = LENGTH(d) - 1
    		str = ""
    		w = d[0]
    		IFB indexOfLastWord > 0 THEN
    			str = str + w
    			DIM i = 1
    			WHILE i < indexOfLastWord
    				ws = d[i] + ""
    				k = LOG_BASE - LENGTH(ws)
    				IF k THEN str = str + getZeroString(k)
    				str = str + ws
    				i = i + 1
    			WEND
    			w = d[i]
    			ws = w + ""
    			k = LOG_BASE - LENGTH(ws)
    			IF k THEN str = str + getZeroString(k)
    		ELSEIF w = 0 THEN
    			RESULT = "0"
    			EXIT
    		ENDIF
    		// Remove trailing zeros of last w.
    		WHILE w MOD 10 = 0 AND w <> 0
    			w = w / 10
    		WEND
    		RESULT = str + w
    	FEND
    	FUNCTION checkInt32(i, min, max)
    		IF i <> VARTYPE(i, VAR_INTEGER) OR i < min OR i > max THEN RESULT = ERR_VALUE
    	FEND
    	FUNCTION checkRoundingDigits(d, i, rm, repeating = NULL)
    		// Get the length of the first word of the array d.
    		k = d[0]
    		WHILE k >= 10
    			i = i - 1
    			k = k / 10
    		WEND
    		// Is the rounding digit in the first word of d?
    		i = i - 1
    		IFB i < 0 THEN
    			i = i + LOG_BASE
    			di = 0
    		ELSE
    			di = VAL(CEIL((i + 1) / LOG_BASE))
    			i = i MOD LOG_BASE
    		ENDIF
    		// i is the index (0 - 6) of the rounding digit.
    		// E.g. if within the word 3487563 the first rounding digit is 5,
    		// then i = 4, k = 1000, rd = 3487563 % 1000 = 563		RESULT = ERR_VALUE
    		k = POWER(10, LOG_BASE - i)
    		IFB di > UBound(d) THEN
    			rd = 0
    		ELSE
    			rd = d[di] MOD k
    		ENDIF
    		IFB repeating = NULL THEN
    			IFB i < 3 THEN
    				IFB i = 0 THEN
    					rd = rd / 100
    				ELSEIF i = 1 THEN
    					rd = rd / 10
    				ENDIF
    				r = rm < 4 AND rd = 99999 OR rm > 3 AND rd = 49999 OR rd = 50000 OR rd = 0
    			ELSE
    				IFB di + 1 > UBound(d) THEN
    					n = 0
    				ELSE
    					n = d[di + 1]
    				ENDIF
    				r = (rm < 4 AND rd + 1 = k OR rm > 3 AND rd + 1 = k / 2) AND (n / k / 100) = POWER(10, i - 2) - 1 OR (rd = k / 2 OR rd = 0) AND (n / k / 100) = 0
    			ENDIF
    		ELSE
    			IFB i < 4 THEN
    				IFB i = 0 THEN
    					rd = rd / 1000
    				ELSEIF i = 1 THEN
    					rd = rd / 100
    				ELSEIF i = 2 THEN
    					rd = rd / 10
    				ENDIF
    				r = (repeating OR rm < 4) AND rd = 9999 OR !repeating AND rm > 3 AND rd = 4999
    			ELSE
    				IFB di + 1 > UBound(d) THEN
    					n = 0
    				ELSE
    					n = d[di + 1]
    				ENDIF
    				r = ((repeating OR rm < 4) AND rd + 1 = k OR (!repeating AND rm > 3) AND rd + 1 = k / 2) AND (n / k / 1000) = POWER(10, i - 3) - 1
    			ENDIF
    		ENDIF
    		RESULT = VARTYPE(r, VAR_BOOLEAN)
    	FEND
    	FUNCTION convertBase(str, baseIn, baseOut)
    		CONST NUMERALS = "0123456789abcdef"
    		DIM arr[0] = 0
    		DIM i = 0
    		DIM strL = LENGTH(str)
    		WHILE i < strL
    			arrL = LENGTH(arr)
    			WHILE TRUE
    				arrL = arrL - 1
    				IF arrL < 0 THEN BREAK
    				arr[arrL] = arr[arrL] * baseIn
    			WEND
    			arr[0] = arr[0] + (POS(COPY(str, i+1, 1), NUMERALS) - 1)
    			i = i + 1
    			j = 0
    			WHILE j < LENGTH(arr)
    				IFB arr[j] > baseOut - 1 THEN
    					IF j + 1 > UBound(arr) THEN
    						RESIZE(arr, j + 1)
    						arr[j+1] = 0
    					ENDIF
    					arr[j+1] = arr[j+1] + INT(arr[j] / baseOut)
    					arr[j] = arr[j] MOD baseOut
    				ENDIF
    				j = j + 1
    			WEND
    		WEND
    		arrayReverse(arr)
    		RESULT = SLICE(arr)
    	FEND
    	FUNCTION cosine2(Ctor, x)
    		IFB isZero(x) THEN
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		// Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1
    		// i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1
    		// Estimate the optimum number of times to use the argument reduction.
    		xd = x
    		xd = SLICE(xd, 2)
    		len = LENGTH(xd)
    		IFB len < 32 THEN
    			k = GLOBAL.CEIL(len / 3)
    			y = "" + (1 / tinyPow(4, k))
    		ELSE
    			k = 16
    			y = "2.3283064365386962890625e-10"
    		ENDIF
    		CtorPrecision = CtorPrecision + k
    		x = taylorSeries(Ctor, 1, times(x, y), Constructor(1))
    		// Reverse argument reduction
    		i = k
    		WHILE i > 0
    			i = i - 1
    			cos2x = times(x, x, NULL)
    			x = times(cos2x, cos2x, NULL)
    			x = minus(x, cos2x, NULL)
    			x = times(x, 8, NULL)
    			x = plus(x, 1, NULL)
    		WEND
    		CtorPrecision = CtorPrecision - k
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION finalise(x, sd = NULL, rm = NULL, isTruncated = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		xd = SLICE(x, 2)
    		WHILE sd <> NULL
    			// Get the length of the first word of the digits array xd.
    			digits = 1
    			k = VAL(xd[0])
    			WHILE k >= 10
    				digits = digits + 1
    				k = k / 10
    			WEND
    			i = sd - digits
    			// Is the rounding digit in the first word of xd?
    			IFB i < 0 THEN
    				i = i + LOG_BASE
    				j = sd
    				xdi = 0
    				w = xd[xdi]
    				// Get the rounding digit at index j of w.
    				rd = w / POWER(10, digits - j - 1) MOD 10
    			ELSE
    				xdi = GLOBAL.CEIL((i+1)/LOG_BASE)
    				k = LENGTH(xd)
    				IFB xdi >= k THEN
    					IFB isTruncated THEN
    						// Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`.
    						WHILE k <= xdi
    							arrayPush(xd, 0)
    							k = k + 1
    						WEND
    						rd = 0
    						w = rd
    						digits = 1
    						i = i MOD LOG_BASE
    						j = i - LOG_BASE + 1
    					ELSE
    						BREAK
    					ENDIF
    				ELSE
    					k = xd[xdi]
    					w = k
    					// Get the number of digits of w.
    					digits = 1
    					WHILE k >= 10
    						digits = digits + 1
    						k = k / 10
    					WEND
    					// Get the index of rd within w.
    					i = i MOD LOG_BASE
    					// Get the index of rd within w, adjusted for leading zeros.
    					// The number of leading zeros of w is given by LOG_BASE - digits.
    					j = i - LOG_BASE + digits
    					// Get the rounding digit at index j of w.
    					rd = IIF(j < 0, 0, INT(w / POWER(10, digits - j - 1)) MOD 10)
    				ENDIF
    			ENDIF
    			// Are there any non-zero digits after the rounding digit?
    			// isTruncated = 
    			//IF isTruncated OR sd < 0 OR x[xdi+3] = EMPTY THEN 
    			//isTruncated = FALSE
    			IFB isTruncated THEN
    			ELSEIF sd < 0 THEN
    				isTruncated = TRUE
    			ELSEIF xdi > UBound(xd) THEN
    				isTruncated = TRUE
    			ELSEIF IIF(j < 0, w, w MOD POWER(10, digits - j - 1)) THEN
    				isTruncated = TRUE
    			ENDIF
    			// The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right
    			// of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression
    			// will give 714.
    			IFB i > 0 THEN
    				tmp = IIF(j > 0, w / POWER(10, digits - j), 0)
    			ELSE
    				IFB xdi = 0 THEN
    					tmp = 0
    				ELSE
    					tmp = xd[xdi - 1] MOD 10
    				ENDIF
    			ENDIF
    			IF isTruncated = NULL THEN isTruncated = FALSE
    			roundUp = IIF(rm < 4, _
    							// truepart
    							(VARTYPE(rd, VAR_BOOLEAN) OR VARTYPE(isTruncated, VAR_BOOLEAN)) AND (rm = 0 OR VARTYPE(rm = IIF(x[0] < 0, 3, 2), VAR_BOOLEAN)), _
    							// falsepart
    							rd > 5 OR rd = 5 AND (rm = 4 OR isTruncated OR rm = 6 AND _
    								// Check whether the digit to the left of the rounding digit is odd.
    								bitAnd(tmp, 1) OR rm = IIF(x[0] < 0, 8, 7) _
    							) _
    						)
    			IFB sd < 1 OR !xd[0] THEN
    				RESIZE(xd, 0)
    				IFB roundUp THEN
    					// Convert sd to decimal places.
    					sd = sd - (x[1] + 1)
    					// 1, 0.1, 0.01, 0.001, 0.0001 etc.
    					x[2] = POWER(10, (LOG_BASE - sd MOD LOG_BASE) MOD LOG_BASE)
    					x[1] = -1 * sd
    				ELSE
    					// Zero.
    					RESIZE(x, 2)
    					x[2] = 0
    					x[1] = 0
    				ENDIF
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			// Remove excess digits.
    			IFB i = 0 THEN
    				RESIZE(xd, xdi-1)
    				RESIZE(x, 1)
    				arrayMerge(x, xd)
    				k = 1
    				xdi = xdi - 1
    			ELSE
    				RESIZE(xd, xdi)
    				RESIZE(x, 1)
    				arrayMerge(x, xd)
    				k = POWER(10, LOG_BASE-i)
    				// E.g. 56700 becomes 56000 if 7 is the rounding digit.
    				// j > 0 means i > number of leading zeros of w.
    				IFB j > 0 THEN
    					RESIZE(x, xdi+2)
    					xd[xdi] = INT(INT(w / POWER(10, digits-j)) MOD POWER(10, j)) * k
    					x[xdi+2] = xd[xdi]
    				ELSE
    					RESIZE(x, xdi+2)
    					xd[xdi] = 0
    					x[xdi+2] = xd[xdi]
    				ENDIF
    			ENDIF
    			IFB roundUp THEN
    				WHILE TRUE
    					// Is the digit to be rounded up in the first word of xd?
    					IFB xdi = 0 THEN
    						// i will be the length of xd[0] before k is added.
    						i = 1
    						j = VAL(xd[0])
    						WHILE j >= 10
    							i = i + 1
    							j = j / 10
    						WEND
    						xd[0] = VAL(xd[0]) + k
    						x[2] = xd[0]
    						j = VAL(xd[0])
    						k = 1
    						WHILE j >= 10
    							k = k + 1
    							j = j / 10
    						WEND
    						// if i != k the length has increased.
    						IFB i <> k THEN
    							x[1] = x[1] + 1
    							IF x[2] = BASE THEN x[2] = 1
    						ENDIF
    						BREAK
    					ELSE
    						xd[xdi] = xd[xdi] + k
    						IF xd[xdi] <> BASE THEN BREAK
    						xd[xdi] = 0
    						xdi = xdi - 1
    						k = 1
    					ENDIF
    				WEND
    			ENDIF
    			// Remove trailing zeros.
    			FOR i = UBound(xd) TO 0 STEP -1
    				IFB xd[i] = 0 THEN
    					arrayPop(xd)
    				ELSE
    					BREAK
    				ENDIF
    			NEXT
    			BREAK
    		WEND
    		IFB external THEN
    			// Overflow?
    			IFB x[1] > maxE THEN
    				// Infinity
    				RESIZE(x, 1)
    				x[1] = EMPTY				// 仮の値
    			// Underflow?
    			ELSEIF x[1] < minE THEN
    				x[1] = 0
    				RESIZE(x, 2)
    				x[2] = 0
    			ENDIF
    		ENDIF
    		RESIZE(x, 1)
    		arrayMerge(x, xd)
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION finiteToString(x, isExp = FALSE, sd = EMPTY)
    		IFB !isFinite(x) THEN
    			RESULT = nonFiniteToString(x)
    			EXIT
    		ENDIF
    		e = x[1]
    		xd = SLICE(x, 2)
    		str = digitsToString(xd)
    		len = LENGTH(str)
    		IFB isExp THEN
    			k = sd - len
    			IFB sd AND k > 0 THEN
    				str = COPY(str, 1, 1) + "." + COPY(str, 2) + getZeroString(k)
    			ELSEIF len > 1 THEN
    				str = COPY(str, 1, 1) + "." + COPY(str, 2)
    			ENDIF
    			str = str + IIF(x[1] < 0, "e", "e+") + x[1]
    		ELSEIF e < 0 THEN
    			str = "0." + getZeroString(-1 * e - 1) + str
    			k = sd - len
    			IF sd AND k > 0 THEN str = str + getZeroString(k)
    		ELSEIF e >= len THEN
    			str = str + getZeroString(e + 1 - len)
    			k = sd - e - 1
    			IF sd AND k > 0 THEN str = str + "." + getZeroString(k)
    		ELSE
    			k = e + 1
    			IF k < len THEN str = COPY(str, 1, k) + "." + COPY(str, k+1)
    			k = sd - len
    			IFB sd AND k > 0 THEN
    				IF e + 1 = len THEN str = str + "."
    				str = str + getZeroString(k)
    			ENDIF
    		ENDIF
    		RESULT = str
    	FEND
    	FUNCTION getBase10Exponent(digits[], e)
    		DIM w = digits[0]
    		e = e * LOG_BASE
    		WHILE w >= 10
    			e = e + 1
    			w = w / 10
    		WEND
    		RESULT = e
    	FEND
    	FUNCTION getLN10(Ctor, sd, pr = NULL)
    		IFB sd > LN10PRECISION THEN
    			// Reset global state in case the exception is caught.
    			external = TRUE
    			IF pr THEN CtorPrecision = pr
    		ENDIF
    		RESULT = finalise(Constructor(LN10), sd, 1, TRUE)
    	FEND
    	FUNCTION getPI(Ctor, sd, rm)
    		IFB sd > PI_PRECISION THEN
    			RESULT = ERR_VALUE
    		ELSE
    			RESULT = finalise(Constructor(PI), sd, rm, TRUE)
    		ENDIF
    	FEND
    	FUNCTION getPrecision(digits)
    		w = LENGTH(digits) - 1
    		len = w * LOG_BASE + 1
    		w = digits[w]
    		// If non-zero...
    		IFB w <> 0 THEN
    			// Subtract the number of trailing zeros of the last word.
    			WHILE w MOD 10 = 0
    				len = len - 1
    				w = w / 10
    			WEND
    			// Add the number of digits of the first word.
    			w = digits[0]
    			WHILE VAL(w) >= 10
    				len = len + 1
    				w = w / 10
    			WEND
    		ENDIF
    		RESULT = len
    	FEND
    	FUNCTION getZeroString(k)
    		zs = ""
    		WHILE k > 0
    			zs = zs + "0"
    			k = k - 1
    		WEND
    		RESULT = zs
    	FEND
    	FUNCTION intPow(Ctor, x, n, pr)
    		DIM isTruncated
    		DIM r = Constructor("1")
    		// Max n of 9007199254740991 takes 53 loop iterations.
    		// Maximum digits array length; leaves [28, 34] guard digits.
    		DIM k = CEIL(pr / LOG_BASE + 4)
    		external = FALSE
    		WHILE TRUE
    			IFB n MOD 2 THEN
    				r = times(r, x)
    				rd = SLICE(r, 2)
    				IF truncate(rd, k) THEN isTruncated = TRUE
    			ENDIF
    			n = GLOBAL.floor(n/2)
    			IFB n = 0 THEN
    				rd = SLICE(r, 2)
    				// To ensure correct rounding when r.d is truncated, increment the last word if it is zero.
    				n = LENGTH(rd) - 1
    				IF isTruncated AND rd[n] = 0 THEN rd[n] = rd[n] + 1
    				BREAK
    			ENDIF
    			x = times(x, x)
    			xd = SLICE(x, 2)
    			truncate(xd, k)
    		WEND
    		external = TRUE
    		RESULT = r
    	FEND
    	FUNCTION isOdd(n)
    		nd = SLICE(n, 2)
    		RESULT = nd[LENGTH(nd) - 1] AND 1
    	FEND
    	FUNCTION maxOrMin(Ctor, args, ltgt)
    		RESULT = ERR_VALUE
    	FEND
    	FUNCTION naturalExponential(x, sd = NULL, isNumeric = FALSE)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)				
    		rep = 0
    		i = 0
    		k = 0
    		rm = CtorRounding
    		pr = CtorPrecision
    		// 0/NaN/Infinity
    		IFB (x[0] = 1 AND x[1] = 0 AND x[2] = 0) OR x[1] = NULL OR x[1] > 17 THEN
    			
    		ENDIF
    		IFB sd = NULL THEN
    			external = FALSE
    			wpr = pr
    		ELSE
    			wpr = sd
    		ENDIF
    		t = Constructor(0.03125)
    		// while abs(x) >= 0.1
    		WHILE x[1] > -2
    			// x = x / 2^5
    			x = times(x, t)
    			k = k + 5
    		WEND
    		// Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision
    		// necessary to ensure the first 4 rounding digits are correct.
    		guard = INT(GLOBAL.LN(POWER(2, k)) / MathLN10 * 2 + 5)
    		wpr = wpr + guard
    		sum = Constructor("1")
    		pow = sum
    		denominator = pow
    		precision = wpr
    		WHILE TRUE
    			pow = finalise(times(pow, x), wpr, 1)
    			i = i + 1
    			denominator = times(denominator, i)
    			t = plus(sum, divide(pow, denominator, wpr, 1))
    			td = SLICE(t, 2)
    			sumd = SLICE(sum, 2)
    			IFB COPY(digitsToString(td), 1, wpr) = COPY(digitsToString(sumd), 1, wpr) THEN
    				j = k
    				j = j - 1
    				WHILE j >= 0
    					sum = finalise(times(sum, sum), wpr, 1)
    					j = j - 1
    				WEND
    				// Check to see if the first 4 rounding digits are [49]999.
    				// If so, repeat the summation with a higher precision, otherwise
    				// e.g. with precision: 18, rounding: 1
    				// exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123)
    				// `wpr - guard` is the index of first rounding digit.				
    				IFB sd = NULL THEN
    					sumd = SLICE(sum, 2)
    					IFB rep < 3 AND checkRoundingDigits(sumd, wpr - guard, rm, rep) THEN
    						precision = wpr = wpr + 10
    						t = Constructor(1)
    						pow = t
    						denominator = pow
    						i = 0
    						rep = rep + 1
    					ELSE
    						precision = pr
    						RESULT = finalise(sum, precision, rm, external = TRUE)
    						IF isnumeric = NULL THEN EXIT
    						RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))						
    						EXIT
    					ENDIF
    				ELSE
    					precision = pr
    					RESULT = sum
    					IF isnumeric = NULL THEN EXIT
    					RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    					EXIT
    				ENDIF
    			ENDIF
    			sum = t
    		WEND
    	FEND
    	FUNCTION naturalLogarithm(y, sd = NULL, isNumeric = FALSE)
    		y = IIF(VARTYPE(y) < 8192, Constructor(y), y)		
    		n = 1
    		guard = 10
    		x = y
    		xd = SLICE(x, 2)
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		rm = CtorRounding
    		pr = CtorPrecision
    		// Is x negative or Infinity, NaN, 0 or 1?
    		IFB x[0] < 0 THEN
    //			RESULT = Constructor(0)
    			EXIT
    		ENDIF
    		IFB sd = NULL THEN
    			external = FALSE
    			wpr = pr
    		ELSE
    			wpr = sd
    		ENDIF
    		wpr = wpr + guard
    		Ctorprecision = wpr
    		c = digitsToString(xd)
    		c0 = COPY(c, 1, 1)
    		e = x[1]
    		IFB .lessThan(GLOBAL.ABS(e), "1.5e+15") THEN
    			// Argument reduction.
    			// The series converges faster the closer the argument is to 1, so using
    			// ln(a^b) = b * ln(a),   ln(a) = ln(a^b) / b
    			// multiply the argument by itself until the leading digits of the significand are 7, 8, 9,
    			// 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can
    			// later be divided by this number, then separate out the power of 10 using
    			// ln(a*10^b) = ln(a) + b*ln(10).
    
    			// max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14).
    			//while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) {
    			// max n is 6 (gives 0.7 - 1.3)
    			WHILE c0 < 7 AND c0 <> 1 OR c0 = 1 AND COPY(c, 1, 1) > 3
    				x = times(x, y)
    				xd = SLICE(x, 2)
    				c = digitsToString(xd)
    				c0 = COPY(c, 1, 1)
    				n = n + 1
    			WEND
    			e = x[1]
    			IFB c0 > 1 THEN
    				x = Constructor("0." + c)
    				e = e + 1
    			ELSE
    				x = Constructor(c0 + "." + COPY(c, 2))
    			ENDIF
    		ELSE
    			// The argument reduction method above may result in overflow if the argument y is a massive
    			// number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this
    			// function using ln(x*10^e) = ln(x) + e*ln(10).
    			t = times(getLn10(Ctor, wpr + 2, pr), e)
    			x = plus(naturalLogarithm(Constructor(c0 + "." + COPY(c, 2)), wpr - guard), t)
    			precision = pr
    			external = TRUE
    			RESULT = IIF(sd = NULL, finalise(x, pr, rm, external), x)
    			EXIT
    		ENDIF
    		// x1 is x reduced to a value near 1.
    		x1 = x
    		// Taylor series.
    		// ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...)
    		// where x = (y - 1)/(y + 1)    (|x| < 1)
    		x = divide(minus(x, "1"), plus(x, "1"), wpr, 1)
    		numerator = x
    		sum = numerator
    		sumd = SLICE(sum, 2)
    		x2 = finalise(times(x, x), wpr, 1)
    		denominator = 3
    		WHILE TRUE
    			numerator = finalise(times(numerator, x2), wpr, 1)
    			t = plus(sum, divide(numerator, constructor(denominator), wpr, 1, NULL, NULL, NULL), NULL)
    			td = SLICE(t, 2)
    			IFB COPY(digitsToString(td), 1, wpr) = COPY(digitstoString(sumd), 1, wpr) THEN
    				sum = times(sum, "2")
    				// Reverse the argument reduction. Check that e is not 0 because, besides preventing an
    				// unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0.
    				IF e <> 0 THEN sum = plus(sum, times(getLn10(Ctor, wpr + 2, pr), e, NULL), NULL)
    				sum = divide(sum, Constructor(n), wpr, 1)
    				sumd = SLICE(sum, 2)
    				// Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has
    				// been repeated previously) and the first 4 rounding digits 9999?
    				// If so, restart the summation with a higher precision, otherwise
    				// e.g. with precision: 12, rounding: 1
    				// ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463.
    				// `wpr - guard` is the index of first rounding digit.
    				IFB sd = NULL THEN
    					rep = 0
    					IFB checkRoundingDigits(sumd, wpr - guard, rm, rep) THEN
    						wpr = wpr + guard
    						precision = wpr
    						x = divide(minus(x1, "1"), plus(x1, "1"), wpr, 1)
    						numerator = x
    						t = numerator
    						x2 = finalise(times(x, x), wpr, 1)
    						rep = 1
    						denominator = wpr
    					ELSE
    						precision = pr
    						external = TRUE
    						RESULT = finalise(sum, precision, rm, external)
    						IF isnumeric = NULL THEN EXIT
    						RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    						EXIT
    					ENDIF
    				ELSE
    					CtorPrecision = pr
    					RESULT = sum
    					IF isnumeric = NULL THEN EXIT
    					RESULT = IIF(isnumeric, toNumber(RESULT), toString(RESULT))
    					EXIT
    				ENDIF
    			ENDIF
    			sum = t
    			sumd = SLICE(sum, 2)
    			denominator = denominator + 2
    		WEND
    	FEND
    	FUNCTION nonFiniteToString(x[])
    		IFB x[0] = NULL AND x[1] = NULL AND x[2] = FALSE THEN
    			RESULT = "NaN"
    		ELSEIF CHKNUM(x[0]) AND x[1] = NULL AND x[2] = FALSE THEN
    			RESULT = IIF(x[0] > 0, "", "-") + "INF"
    		ENDIF
    	FEND
    	FUNCTION parseDecimal(x, str)
    		// Decimal point?
    		e = POS(".", str) - 1
    		IF e <> 0 THEN str = REPLACE(str, ".", "")
    		// Exponential form?
    		DIM i = POS("e", str)
    		IFB i <> 0 THEN
    			// Determine exponent.
    			IF e < 0 THEN e = i
    			e = VAL(COPY(str, i+1))
    			str = COPY(str, 1, i-1)
    		ELSEIF e < 0 THEN
    			// Integer
    			e = LENGTH(str)
    		ENDIF
    		// Determine leading zeros.
    		i = 0
    		WHILE COPY(str, i+1, 1) = "0"
    			i = i + 1
    		WEND
    		// Determine trailing zeros.
    		len = LENGTH(str)
    		WHILE COPY(str, len, 1) = "0"
    			len = len - 1
    			IF len = 0 THEN BREAK
    		WEND
    		str = COPY(str, i+1, len-i)
    		IFB str <> 0 AND str <> "" THEN
    			len = len - i
    			e = e - i - 1
    			RESIZE(x, 1)
    			x[1] = e
    			//x[2] = 0
    			// Transform base
    			// e is the base 10 exponent.
    			// i is where to slice str to get the first word of the digits array.
          		i = (e + 1) MOD LOG_BASE
    			IF e < 0 THEN i = i + LOG_BASE
    			IFB i < len THEN
    				IF i THEN arrayPush(x, VAL(COPY(str, 1, i)))
    				len = len - LOG_BASE
    				WHILE i < len
    					arrayPush(x, VAL(COPY(str, i+1, LOG_BASE)))
    					i = i + LOG_BASE
    				WEND
    				str = COPY(str, i+1)
    				i = LOG_BASE - LENGTH(str)
    			ELSE
    				i = i - len
    			ENDIF
    			WHILE i > 0
    				str = str + "0"
    				i = i - 1
    			WEND
    			arrayPush(x, VAL(str))
    			IFB external THEN
    				// Overflow?
    				IFB x[1] = maxE THEN
    					// Infinity.
    					x[2] = NULL
    					x[1] = NULL
    				// Underflow?
    				ELSEIF x[1] = minE THEN
    					// Zero.
    					x[1] = 0
    					x[2] = 0
    				ENDIF
    			ENDIF
    		ELSE
    			// Zero.
    			RESIZE(x, 2)
    			x[1] = 0
    			x[2] = 0
    		ENDIF
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION parseOther(x, str)
    		IF POS("Infinity", str) THEN str = REPLACE(str, "Infinity", "INF")
    		IFB POS("_", str) <> 0 THEN
    			
    		ELSEIF str = "INF" OR str = "NaN" THEN
    			IF str = "NaN" THEN x[0] = NULL
    			RESIZE(x, 2)
    			x[1] = NULL
    			x[2] = FALSE
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		IFB reTest(str, isHex) THEN
    			_base = 16
    			str = STRCONV(str, SC_LOWERCASE)
    		ELSEIF reTest(str, isBinary) THEN
    			_base = 2
    		ELSEIF reTest(str, isOctal) THEN
    			_base = 8
    		ELSE
    			
    			EXIT
    		ENDIF
    		// Is there a binary exponent part?
    		i = POS("p", str)
    		IFB i > 0 THEN
    			p = COPY(str, (i+1)+1)
    			str = COPY(str, 2+1, i+1)
    		ELSE
    			p = NULL
    			str = COPY(str, 2+1)
    		ENDIF
    		// Convert `str` as an integer then divide the result by `base` raised to a power such that the
    		// fraction part will be restored.
    		i = POS(".", str)
    		isFloat = i >= 1
    		json = "{'precision':20, 'rounding':7}"
    		Ctor = JSON.Parse(REPLACE(json, "'", "<#DBL>"))
    		IFB isFloat THEN
    			str = REPLACE(str, ".", "")
    			len = LENGTH(str)
    			i = len - i
    			// log[10](16) = 1.2041... , log[10](88) = 1.9444....
    			divisor = intPow(Ctor, Constructor(base), i, i * 2)
    		ELSE
    			len = NULL
    			divisor = NULL
    		ENDIF
    		xd = convertBase(str, _base, base)
    		xe = LENGTH(xd) - 1
    		// Remove trailing zeros.
    		i = xe
    		WHILE xd[i] = 0
    			i = i - 1
    			arrayPop(xd)
    		WEND
    		IFB i < 0 THEN
    //			RESULT = 
    			EXIT
    		ENDIF
    		RESIZE(x, 1)
    		x[1] = getBase10Exponent(xd, xe)
    		arrayMerge(x, xd)
    		external = FALSE
    		// At what precision to perform the division to ensure exact conversion?
    		// maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount)
    		// log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412
    		// E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits.
    		// maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount
    		// Therefore using 4 * the number of digits of str will always be enough.
    		IF isFloat THEN x = divide(x, divisor, len * 4)
    		// Multiply by the binary exponent part if present.
    		IF p <> NULL THEN x = times(x, POWER(2, p))
    		external = TRUE
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION sine2(Ctor, x)
    		xd = x
    		xd = SLICE(xd, 2)
    		len = LENGTH(xd)
    		IFB len < 3 THEN
    			RESULT = IIF(isZero(x), x, taylorSeries(Ctor, 2, x, x))
    			EXIT
    		ENDIF
    		// Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x)
    		// i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5)
    		// and  sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20))
    		
    		// Estimate the optimum number of times to use the argument reduction.
    		k = 1.4 * GLOBAL.SQRT(len)
    		k = INT(IIF(k > 16, 16, k))
    		x = times(x, 1 / tinyPow(5, k), NULL)
    		x = taylorSeries(Ctor, 2, x, x)
    		// Reverse argument reduction
    		d5 = Constructor(5)
    		d16 = Constructor(16)
    		d20 = Constructor(20)
    		WHILE k > 0
    			k = k - 1
    			sin2x = times(x, x, NULL)
    			x = times(x, plus(d5, times(sin2x, minus(times(d16, sin2x, NULL), d20, NULL), NULL), NULL), NULL)
    		WEND
    		RESULT = SLICE(x)
    	FEND
    	FUNCTION taylorSeries(Ctor, n, x, y, isHyperbolic = NULL)
    		i = 1
    		pr = CtorPrecision
    		k = GLOBAL.CEIL(pr / LOG_BASE)
    		external = FALSE
    		x2 = times(x, x)
    		u = Constructor(y)
    		WHILE TRUE
    			multiplicand = times(u, x2)
    			multiplier = Constructor(n * (n + 1))
    			t = divide(multiplicand, multiplier, pr, 1)
    			n = n + 2
    			isHyperbolic = IIF(isHyperbolic = NULL, FALSE, isHyperbolic)
    			u = IIF(isHyperbolic, plus(y, t), minus(y, t))
    			y = divide(times(t, x2), Constructor(n * (n + 1)), pr, 1)
    			n = n + 2
    			t = plus(u, y)
    			td = SLICE(t, 2)
    			ud = SLICE(u, 2)
    			IFB !(UBound(td) < k) THEN
    				j = k
    				TRY
    					WHILE td[j] = ud[j] AND j >= 0
    						j = j - 1
    						IF j = 0 THEN BREAK 2
    					WEND
    				EXCEPT
    				ENDTRY
    				IF j = -1 THEN BREAK
    			ENDIF
    			j = u
    			u = y
    			y = t
    			t = j
    			i = i + 1			
    		WEND
    		external = TRUE
    		RESIZE(td, k)
    		RESIZE(t, 1)
    		arrayMerge(t, td)
    		RESULT = SLICE(t)
    	FEND
    	FUNCTION tinyPow(b, e)
    		DIM n = b
    		e = e - 1
    		WHILE e > 0
    			n = n * b
    			e = e - 1
    		WEND
    		RESULT = n
    	FEND
    	FUNCTION toLessThanHalfPi(Ctor, x)
    		isNeg = x[0] < 0
    		_pi = getPi(Ctor, Ctor.precision, 1)
    		halfPi = times(_pi, "0.5", NULL)
    		x = absoluteValue(x, NULL)
    		IFB lte(x, halfPi) THEN
    			CtorQuadrant = IIF(isNeg, 4, 1)
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = divToInt(x, pi)
    		IFB isZero(t) THEN
    			quadrant = IIF(isNeg, 3, 2)
    		ELSE
    			x = minus(x, times(t, pi))
    			// 0 <= x <pi
    			IFB lte(x, halfPi) THEN
    				quadrant = IIF(isOdd(t), IIF(isNeg, 2, 3), IIF(isNeg, 4, 1))
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			quadrant = IIF(isOdd(t), IIF(isNeg, 1, 4), IIF(isNeg, 3, 2))
    		ENDIF
    		RESULT = abs(minus(x, pi))
    	FEND
    	FUNCTION toLessThanHalfPi2(Ctor, x)
    		isNeg = x[0] < 0
    		_pi = getPi(Ctor, CtorPrecision, 1)
    		halfPi = times(_pi, "0.5", NULL)
    		x = absoluteValue(x, NULL)
    		IFB lte(x, halfPi) THEN
    			CtorQuadrant = IIF(isNeg, 4, 1)
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = divToInt(x, pi)
    		IFB isZero(t) THEN
    			quadrant = IIF(isNeg, 3, 2)
    		ELSE
    			x = minus(x, times(t, pi))
    			// 0 <= x <pi
    			IFB lte(x, halfPi) THEN
    				quadrant = IIF(isOdd(t), IIF(isNeg, 2, 3), IIF(isNeg, 4, 1))
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			quadrant = IIF(isOdd(t), IIF(isNeg, 1, 4), IIF(isNeg, 3, 2))
    		ENDIF
    		RESULT = abs(minus(x, pi))
    	FEND
    	FUNCTION toStringBinary(x, baseOut, sd, rm)
    		x = IIF(VARTYPE(x) < 8192, Constructor(x), x)
    		isExp = IIF(sd <> NULL, TRUE, FALSE)
    		IFB isExp THEN
    			checkInt32(sd, 1, MAX_DIGITS)
    			IFB rm = NULL THEN
    				rm = CtorRounding
    			ELSE
    				checkInt32(rm, 0, 8)
    			ENDIF
    		ELSE
    			sd = CtorPrecision
    			rm = CtorRounding
    		ENDIF
    		IFB !isFinite(x) THEN
    			str = nonFiniteToString(x)
    		ELSE
    			str = finiteToString(x)
    			i = POS(".", str) - 1
    			// Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required:
    			// maxBinaryExponent = floor((decimalExponent + 1) * log[2](10))
    			// minBinaryExponent = floor(decimalExponent * log[2](10))
    			// log[2](10) = 3.321928094887362347870319429489390175864
    			IFB isExp THEN
    				_base = 2
    				IFB baseOut = 16 THEN
    					sd = sd * 4 - 3
    				ELSEIF baseOut = 8 THEN
    					sd = sd * 3 - 2
    				ENDIF
    			ELSE
    				_base = baseOut
    			ENDIF
    		ENDIF
    		// Convert the number as an integer then divide the result by its base raised to a power such
    		// that the fraction part will be restored.
    
    		// Non-integer.
    		IFB i >= 0 THEN
    			str = REPLACE(str, ".", "")
    			y = Constructor(1)
    			y[1] = LENGTH(str) - i
    			yd = convertBase(finiteToString(y), 10, _base)
    			RESIZE(y, 1)
    			arrayMerge(y, yd)
    			y[1] = LENGTH(yd)
    		ENDIF
    		xd = convertBase(str, 10, _base)
    		len = LENGTH(xd)
    		e = len
    		// Remove trailing zeros.
    		len = len - 1
    		WHILE xd[len] = 0
    			arrayPop(xd)
    			IF len = 0 THEN BREAK
    			len = len - 1
    		WEND
    		IFB !xd[0] THEN
    			str = IIF(isExp, "0p+0", "0")
    		ELSE
    			IFB i < 0 THEN
    				e = e - 1
    				roundUp = FALSE
    			ELSE
    				// 修正
    				x = Constructor(x)
    				x = RESIZE(x, 1)
    				arrayMerge(x, xd)
    				x[1] = e
    				x = divide(x, y, sd, rm, 0, base)
    				xd = SLICE(x)
    				e = x[1]
    				roundUp = inexact
    			ENDIF
    			// The rounding digit, i.e. the digit after the digit that may be rounded up.
    			IFB sd > UBound(xd) THEN
    				i = NULL
    				roundUp = roundUp OR FALSE
    			ELSE
    				i = xd[sd]
    				roundUp = roundUp OR xd[sd + 1] <> NULL
    			ENDIF
    			k = _base / 2
    			IFB rm < 4 THEN
    				// (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2))
    				roundUp = (i = NULL OR roundUp) AND (rm = 0 OR rm = IIF(x[0] < 0, 3, 2))
    			ELSE
    				// i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 ||
                	// rm === (x.s < 0 ? 8 : 7));
    				bit = IIF(sd - 1 > UBound(xd), 0, 1)
    				roundUp = (i > k OR i = k AND (rm = 4 OR roundUp OR rm = 6 AND bitAnd(bit, 1)) OR rm = IIF(x[0] < 0, 8, 7))
    			ENDIF
    //			roundUp = IIF(rm < 4, _
    //						(i <> NULL OR roundUp) AND (rm = 0 OR rm = IIF(x[0] < 0, 3, 2)), _
    //						i > k OR i = k AND (rm = 4 OR roundUp OR rm = 6 AND xd[sd - 1] AND 1 OR rm = IIF(x[0] < 0, 8, 7))
    			RESIZE(xd, sd)
    			IFB roundUp THEN
    				// Rounding up may mean the previous digit has to be rounded up and so on.
    				sd = sd - 1
    				WHILE xd[sd] > base - 1
    					xd[sd] = 0
    					IFB !sd THEN
    						e = e + 1
    						arrayUnshift(xd)
    					ENDIF
    				WEND
    			ENDIF
    			// Determine trailing zeros.
    			len = LENGTH(xd)
    			WHILE !xd[len - 1]
    				len = len - 1
    			WEND
    			// E.g. [4, 11, 15] becomes 4bf.
    			str = ""
    			FOR i = 0 TO len - 1
    				str = str + COPY(NUMERALS, VAL(xd[i]) + 1, 1)
    			NEXT
    			// Add binary exponent suffix?
    			IFB isExp THEN
    				IFB len > 1 THEN
    					IFB baseOut = 16 OR baseOut = 8 THEN
    						i = IIF(baseOut = 16, 4, 3)
    						WHILE len MOD i
    							str = str + "0"
    							len = len + 1
    						WEND
    						xd = convertBase(str, base, baseOut)
    						len = xd
    						WHILE !xd[len - 1]
    							len = len - 1
    						WEND
    						// xd[0] will always be be 1
    						str = "1"
    						FOR i = 1 TO len
    							str = str + COPY(NUMERALS, xd[i], 1)
    						NEXT
    					ELSE
    						str = COPY(str, 1, 1) + "." + COPY(str, 2)
    					ENDIF
    				ENDIF
    			ELSEIF e < 0 THEN
    				WHILE e < 0
    					str = "'0" + str
    					e = e + 1
    				WEND
    				str = "0." + str
    			ELSE
    				e = e + 1
    				IFB e > len THEN
    					FOR e = e - len TO 1 STEP -1
    						str = str + "0"
    					NEXT
    				ELSEIF e < len THEN
    					str = COPY(str, 1, e) + "." + COPY(str, e)
    				ENDIF
    			ENDIF
    			str = IIF(baseOut = 16, "0x", IIF(baseOut = 2, "0b", IIF(baseOut = 8, "0o", ""))) + str
    		ENDIF
    		RESULT = IIF(x[0] < 0, "-" + str, str)
    	FEND
    	FUNCTION truncate(arr, len)
    		IFB LENGTH(arr) > len THEN
    			RESIZE(arr, len)
    			RESULT = TRUE
    			EXIT
    		ENDIF
    	FEND
    	//////////////////////////////
    	// その他
    	//////////////////////////////
    	FUNCTION compare(a, b, aL, bL)
    		IFB aL <> bL THEN
    			r = IIF(aL > bL, 1, -1)
    		ELSE
    			r = 0
    			i = r
    			WHILE i < aL
    				IFB a[i] <> b[i] THEN
    					r = IIF(a[i] > b[i], 1, -1)
    					BREAK
    				ENDIF
    				i = i + 1
    			WEND
    		ENDIF
    		RESULT = r
    	FEND
    	FUNCTION Constructor(v)
    		CONST number = 5
    		CONST string = 258
    		DIM x = SAFEARRAY(-1)
    		// Duplicate.
    		IFB isDecimalInstance(v) THEN
    			x[0] = v[0]
    			vd = SLICE(v, 2)
    			IFB external THEN
    				IFB !LENGTH(vd) OR v[1] > maxE THEN
    					// Infinity.
    					RESIZE(x, 2)
    					x[1] = NULL
    					x[2] = NULL
    				ELSEIF v[1] < minE THEN
    					// Zero.
    					RESIZE(x, 2)
    					x[1] = 0
    					x[2] = 0
    				ELSE
    					RESIZE(x, 1)
    					x[1] = v[1]
    					arrayMerge(x, vd)
    				ENDIF
    			ELSE
    				RESIZE(x, 1)
    				x[1] = v[1]
    				arrayMerge(x, vd)
    			ENDIF
    			RESULT = SLICE(x)
    			EXIT
    		ENDIF
    		t = VARTYPE(v)
    		IFB t = number THEN
    			IFB v = 0 THEN
    				RESIZE(x, 2)
    				x[0] = IIF(1/v<0, -1, 1)
    				x[1] = 0
    				x[2] = 0
    				RESULT = SLICE(x)
    				EXIT
    			ENDIF
    			IFB v < 0 THEN
    				v = -1 * v
    				x[0] = -1
    			ELSE
    				x[0] = 1
    			ENDIF
    			// Fast path for small integers.
    			IFB v < POWER(10, 7) THEN
    				IFB v = VARTYPE(v, VAR_INTEGER) THEN
    					e = 0
    					i = v
    					WHILE i >= 10
    						e = e + 1
    						i = i / 10
    					WEND
    					IFB external THEN
    						IFB e > maxE THEN
    							RESIZE(x, 2)
    							x[1] = NULL
    							x[2] = NULL
    						ELSEIF e < minE THEN
    							RESIZE(x, 2)
    							x[1] = 0
    							x[2] = 0
    						ELSE
    							RESIZE(x, 1)
    							x[1] = e
    							arrayPush(x, v)
    						ENDIF
    					ELSE
    						RESIZE(x, 1)
    						x[1] = e
    						DIM tmp[] = v
    						arrayMerge(x, tmp)
    					ENDIF
    					RESULT = SLICE(x)
    					EXIT
    				// Infinity, NaN
    				ELSEIF v * 0 <> 0 THEN
    					IF !v THEN x[0] = NULL
    					x[1] = NULL
    					x[2] = NULL
    					EXIT
    				ENDIF
    			ENDIF
    			RESULT = parseDecimal(x, v)
    			EXIT
    		ELSEIF v = "NaN" THEN
    			RESIZE(x, 2)
    			x[0] = NULL
    			x[1] = NULL
    			x[2] = FALSE
    			RESULT = SLICE(x)
    			EXIT
    		ELSEIF t <> string THEN
    			RESULT = ERR_VALUE
    			EXIT
    		ENDIF
    		// Minus sign?
    		i = COPY(v, 1, 1)
    		IFB i = "-" THEN
    			v = COPY(v, 2)
    			x[0] = -1
    		ELSE
    			// Plus sign?
    			IF i = "+" THEN v = COPY(v, 1)
    			x[0] = 1
    		ENDIF
    		RESULT = IIF(reTest(v, "^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$"), parseDecimal(x, v), parseOther(x, v))
    	FEND
    	FUNCTION isDecimalInstance(v)
    		RESULT = IIF(isArray(v), TRUE, FALSE)
    	FEND
    	FUNCTION multiplyInteger(x, k, base)
    		DIM carry = 0
    		DIM i = UBound(x)
    		WHILE i >= 0
    			temp = x[i] * k + carry
    			x[i] = INT(temp MOD base)
    			carry = INT(temp / base)
    			i = i - 1
    		WEND
    		IF carry <> 0 THEN arrayUnshift(x, carry)
    		RESULT = SLICE(x)
    	FEND
    	PROCEDURE subtract(Var a, b, aL, base)
    		DIM i = 0
    		// Subtract b from a.
    		WHILE aL > 0
    			aL = aL - 1
    			a[aL] = a[aL] - i
    			i = IIF(a[aL] < b[aL], 1, 0)
    			a[aL] = i * base + a[aL] - b[aL]
    		WEND
    		// Remove leading zeros.
    		WHILE !a[0] AND LENGTH(a) > 1
    			arrayShift(a)
    		WEND
    	FEND
    	//////////////////////////////
    	// 自作関数
    	//////////////////////////////
    	FUNCTION calculate(str, pr = 20, rm = 4)
    		RESULT = tokenize(str)
    		RESULT = toRPN(RESULT)
    		RESULT = calcRPN(RESULT, pr, rm)
    	FEND
    	FUNCTION calcRPN(tokens, pr, rm)
    		DIM denominator[-1]
    		DIM numerator[-1]
    		FOR token IN tokens
    			IFB reTest(token, "[0-9.]+") THEN
    				arrayPush(denominator, "" + 1)
    				arrayPush(numerator, "" + token)
    			ELSEIF token = "u-" THEN
    				arrayPush(numerator, times("-1", arrayPop(numerator)))
    			ELSEIF token = "floor" THEN
    				bottom = arrayPop(denominator)
    				top = arrayPop(numerator)
    				arrayPush(denominator, "1")
    				arrayPush(numerator, floor(dividedBy(top, bottom)))
    			ELSEIF token = "ceil" THEN
    				bottom = arrayPop(denominator)
    				top = arrayPop(numerator)
    				arrayPush(denominator, "1")				
    				arrayPush(numerator, THIS.ceil(dividedBy(top, bottom)))
    			ELSE
    				IFB token = "+" OR token = "-" THEN
    					DIM du = UBound(denominator)
    					DIM nu = UBound(numerator)
    					bottom = times(denominator[du], denominator[du-1])
    					top = EVAL(denominator[du] * numerator[nu-1] + token + numerator[nu] * denominator[du-1])
    					arrayPop(denominator)
    					arrayPop(denominator)
    					arrayPop(numerator)
    					arrayPop(numerator)
    					arrayPush(denominator, bottom)
    					arrayPush(numerator, top)
    				ELSEIF token = "*" THEN
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))					
    				ELSEIF token = "/" THEN
    					swap(denominator[UBound(denominator)], numerator[UBound(numerator)])
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))
    				ELSEIF token = "//" THEN
    					swap(denominator[UBound(denominator)], numerator[UBound(numerator)])
    					arrayPush(denominator, times(arrayPop(denominator), arrayPop(denominator)))
    					arrayPush(numerator, times(arrayPop(numerator), arrayPop(numerator)))
    					bottom = arrayPop(denominator)
    					top = arrayPop(numerator)
    					arrayPush(denominator, "1")
    					arrayPush(numerator, THIS.floor(dividedBy(top, bottom)))
    				ELSEIF token = "%" THEN
    					bottom = dividedBy(arrayPop(numerator), arrayPop(denominator))
    					top = dividedBy(arrayPop(numerator), arrayPop(denominator))
    					arrayPush(denominator, "1")
    					arrayPush(numerator, modulo(top, bottom ))
    				ENDIF
    			ENDIF
    			IFB COPY(denominator[UBound(denominator)], 1, 1) = "-" THEN
    				denominator[UBound(denominator)] = times("-1", denominator[UBound(denominator)])
    				numerator[UBound(numerator)] = times("-1", numerator[UBound(numerator)])
    			ENDIF
    		NEXT
    		DIM x = SAFEARRAY(-1)
    		DIM n = dividedBy(numerator[0], denominator[0])
    		x = Constructor(n)
    		RESULT = toString(finalise(x, pr, rm))
    	FEND
    	FUNCTION cmpPrecedence(token1, token2)
    		DIM operators[] = "+", 0, LEFT, "-", 0, LEFT, "*", 5, LEFT, "/", 5, LEFT, "%", 5, LEFT, "^", 10, RIGHT
    		IFB isOperator(token1) AND isOperator(token2) THEN
    			RESULT = operators[arraySearch(token1, operators)+1] - operators[arraySearch(token2, operators)+1]
    		ELSE
    			RESULT = ERR_VALUE
    		ENDIF
    	FEND
    	FUNCTION isOperator(token)
    		RESULT = reTest(token, "[+\-*/%^]")
    	FEND
    	FUNCTION tokenize(expr)
    		DIM tokens[-1]
    		DIM i = 1
    		DIM str = ""
    		WHILE i <= LENGTH(expr)
    			char = COPY(expr, i, 1)
    			IFB reTest(char, "\s") THEN
    				i = i + 1
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[0-9.]") THEN
    				num = char
    				i = i + 1
    				WHILE i <= LENGTH(expr) AND reTest(COPY(expr, i, 1), "[0-9.]")
    					num = num + COPY(expr, i, 1)
    					i = i + 1
    				WEND
    				arrayPush(tokens, VAL(num))
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[+\-*/^%]") THEN
    IFB COPY(expr, i, 2) = "//" THEN
    	arrayPush(tokens, "//")
    	i = i + 2
    ELSE
    				DIM prev = ""
    				IF LENGTH(tokens) >= 1 THEN prev = tokens[LENGTH(tokens)-1]
    				IFB char = "-" AND (LENGTH(tokens) = 0 OR (VARTYPE(prev) = 258 AND (isOperator(prev) OR prev = "(")))
    					arrayPush(tokens, "u-")
    				ELSE
    					arrayPush(tokens, char)
    				ENDIF
    				i = i + 1
    ENDIF
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[A-Za-z0-9]") THEN
    				str = str + char
    				i = i + 1
    				WHILE i <= LENGTH(expr) AND reTest(COPY(expr, i, 1), "[A-Za-z0-9]")
    					str = str + COPY(expr, i, 1)
    					i = i + 1
    				WEND
    				arrayPush(tokens, str)
    				str = ""
    				CONTINUE
    			ENDIF
    			IFB reTest(char, "[()]") THEN
    				IFB str <> "" THEN
    					arrayPush(tokens, str)
    					str = ""
    				ENDIF
    				arrayPush(tokens, char)
    				i = i + 1
    				CONTINUE
    			ENDIF
    		WEND
    		RESULT = SLICE(tokens)
    	FEND
    	FUNCTION toRPN(tokens, pr = 20, rm = 4, isnumeric = FALSE)
    		HASHTBL precedence
    		precedence["^"] = 4
    		precedence["u-"] = 3
    		precedence["*"] = 2
    		precedence["/"] = 2
    		precedence["%"] = 2
    		precedence["+"] = 1
    		precedence["-"] = 1
    		HASHTBL rightAssociative
    		rightAssociative["u-"] = TRUE
    		rightAssociative["^"] = TRUE
    		DIM output[-1]
    		DIM stack[-1]
    		FOR token IN tokens
    			IFB reTest(token, "[0-9]+") THEN
    				arrayPush(output, token)
    			ELSEIF token = "floor" OR token = "ceil" THEN
    				arrayPush(stack, token)
    			ELSEIF token ="(" THEN
    				arrayPush(stack, token)
    			ELSEIF token = ")" THEN
    				WHILE LENGTH(stack) <> 0 AND stack[LENGTH(stack)-1] <> "("
    					arrayPush(output, arrayPop(stack))
    				WEND
    				arrayPop(stack)
    				IF stack[LENGTH(stack) - 1] = "floor" OR stack[LENGTH(stack) - 1] = "ceil" THEN arrayPush(output, arrayPop(stack))
    			ELSE
    				WHILE LENGTH(stack)
    					IFB stack[LENGTH(stack)-1] <> "(" AND _
    						( _
    							precedence[token] < precedence[stack[LENGTH(stack)-1]] OR _
    							( _
    								precedence[token] = precedence[stack[LENGTH(stack)-1]] AND _
    								!rightAssociative[token] _
    							) _
    						) THEN
    						arrayPush(output, arrayPop(stack))
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				arrayPush(stack, token)
    			ENDIF
    		NEXT
    		WHILE LENGTH(stack)
    			arrayPush(output, arrayPop(stack))
    		WEND
    		RESULT = SLICE(output)
    	FEND
    ENDMODULE
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION decimalDigits(num)
    	DIM str = fixed(num)
    	RESULT = IIF(POS(".", str), LENGTH(BETWEENSTR(str, ".")), 0)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   dec : 10進数 
    //   signFlg : 符号付きならばTrueを指定 
    //   digits : 変換した2進数の桁数合わせを自動で行うかを示すブール値、もしくは桁数を表す数値(8,16,24,32,64のいずれか)を指定 
    //   errorMsg : エラーメッセージを出力するかを示すブール値 
    // 【戻り値】
    //   2進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION decToBin(dec, signFlg = FALSE, digits = FALSE, errorMsg = FALSE)
    	// 負数で符号なしならばエラー値を返す
    	IFB dec < 0 AND signFlg = FALSE THEN
    		PRINT "負数の場合signFlgにTrueを指定してください"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	
    	// digitsのビット数が足りなければエラー値を返す、負数なら1桁多く取る
    	IFB VARTYPE(digits) <> VAR_BOOLEAN AND digits < CEIL(LOGN(2, ABS(dec))) + IIF(dec < 0, 1, 0) THEN
    		PRINT "ビット数が足りません"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	
    	// signFlgがTrueかつdigitsがFalseならばエラー値を返す
    	IFB signFlg AND !digits THEN
    		PRINT "signFlgがTrueのときdigitsはFalse以外を選択してください"
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    
    	// bin:2進数に変換した結果を代入する変数
    	DIM bin = ""
    	DIM msg = ""
    	DIM isError = FALSE
    	DIM decimalFlg = IIF(POS(".", dec) <> 0, TRUE, FALSE)
    	DIM negativeFlg = IIF(dec < 0, TRUE, FALSE)
    	dec = ABS(dec)
    	
    	// (1) 10進数を整数部と小数部に分ける
    	DIM integer = IIF(decimalFlg, COPY(dec, 1, POS(".", dec) - 1), dec)
    	DIM decimal = IIF(decimalFlg, "0." + COPY(dec, POS(".", dec) + 1), 0)
    
    	// (2) 10進数(整数部)を2進数に変換する。
    	REPEAT
    		bin = (integer MOD 2) + bin
    		integer = INT(integer / 2)
    	UNTIL integer = 0
    
    	// (3) 10進数(小数部)を2進数に変換する。
    	IFB decimalFlg THEN
    		bin = bin + "."
    		DIM loop = 0
    		REPEAT
    			loop = loop + 1
    			decimal = decimal * 2
    			bin = bin + IIF(decimal >= 1, "1", "0")
    			IF decimal > 1 THEN decimal = decimal - 1
    		UNTIL decimal = 1 OR loop > 64
    	ENDIF
    
    	// digitsがFALSE以外なら
    	IFB digits THEN
    		// (4) 2進数の桁合わせを行う
    		DIM tmp = bin
    		DIM binInteger = TOKEN(".", tmp)
    		DIM binDecimal = TOKEN(".", tmp)
    		// 整数部、小数部を4bit単位になるまで拡張
    		// 整数部、4の倍数になるまで整数部の先頭に'0'を追加
    		IF LENGTH(binInteger) MOD 4 <> 0 THEN binInteger = strRepeat("0", 4 - LENGTH(binInteger) MOD 4) + binInteger
    		// 小数部、4の倍数になるまで小数部の末尾に'0'を追加
    		IF LENGTH(binDecimal) MOD 4 <> 0 THEN binDecimal = binDecimal + strRepeat("0", 4 - LENGTH(binDecimal) MOD 4)
    		DIM digit = LENGTH(binInteger + binDecimal)
    
    		// 10進数の場合、一旦自動調整を行う
    		integer = INT(dec)
    
    		IF signFlg AND COPY(binInteger, 1, 1) = "1" THEN binInteger = strRepeat("0", 4) + binInteger
    
    		IFB signFlg THEN
    			IFB integer >= -128 AND integer <= 127 THEN						// -2^7〜2^7-1
    				binInteger = strRepeat("0", 8 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -32768 AND integer <= 32767 THEN				// -2^15〜2^15-1
    				binInteger = strRepeat("0", 16 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -8388608 AND integer <= 8388607 THEN			// -2^23〜2^23-1
    				binInteger = strRepeat("0", 24 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer >= -2147783648 AND integer <= 2147483647 THEN	// -2^31〜2^31-1
    				binInteger = strRepeat("0", 32 - LENGTH(binInteger)) + binInteger
    			ELSE
    				binInteger = strRepeat("0", 64 - LENGTH(binInteger)) + binInteger
    			ENDIF
    		ELSE
    			IFB integer <= 255 THEN				// 2^8-1
    				binInteger = strRepeat("0", 8 - LENGTH(binInteger)) + binInteger		
    			ELSEIF integer <= 65535 THEN		// 2^16-1
    				binInteger = strRepeat("0", 16 - LENGTH(binInteger)) + binInteger		
    			ELSEIF integer <= 16777215 THEN		// 2^24-1
    				binInteger = strRepeat("0", 24 - LENGTH(binInteger)) + binInteger
    			ELSEIF integer <= 4294967295 THEN	// 2^32-1
    				binInteger = strRepeat("0", 32 - LENGTH(binInteger)) + binInteger
    			ELSE
    				binInteger = strRepeat("0", 64 - LENGTH(binInteger)) + binInteger
    			ENDIF
    		ENDIF
    
    		totalDigits = LENGTH(binInteger + binDecimal)
    
    		IFB totalDigits > 64 THEN
    			DIM del32 = totalDigits - 32
    			DIM del64 = totalDigits - 64
    			IFB del32 = LENGTH(binDecimal) AND digits <> 64 THEN
    				binDecimal = ""
    				msg = "32bitを超えたため、小数点以下を削除しました"
    			ELSEIF del32 < LENGTH(binDecimal) AND digits <> 64 THEN
    				binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - del32)
    				msg = "32bitを超えたため、小数点以下の一部を削除しました"
    			ELSEIF del64 = LENGTH(binDecimal) AND del64 <> 0 THEN
    				binDecimal = ""
    				msg = "64bitを超えたため、小数点以下を削除しました"
    			ELSEIF del64 < LENGTH(binDecimal) THEN
    				binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - del64)
    				msg = "64bitを超えたため、小数点以下の一部を削除しました"
    			ELSE
    				msg = "64bitを超えるため、変換できません"
    				isError = TRUE
    			ENDIF
    		ENDIF
    
    		// 整数部、小数部の合計桁数を8,16,24,32,64bit単位になるまで拡張
    		digit = LENGTH(binInteger + binDecimal)
    		DIM array[] = 8, 16, 24, 32, 64
    		FOR item IN array
    			IFB digit <= item THEN
    				binInteger = strRepeat("0", item - digit) + binInteger
    				BREAK
    			ENDIF
    		NEXT
    
    		// 指定ビットに調整
    		// 合計桁数の再設定
    		totalDigits = LENGTH(binInteger + binDecimal)
    		
    		IFB digits = TRUE THEN
    			// 桁合わせを自動調整
    			IFB totalDigits > 64 THEN
    				len = LENGTH(binInteger + binDecimal)
    				WHILE LENGTH(binInteger) > 8 AND len > digits
    					IFB COPY(binInteger, 1, 4) = "0000" THEN
    						binInteger = COPY(binInteger, 5)
    						len = len - 4
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    	
    				WHILE LENGTH(binDecimal) > 4 AND LENGTH(binInteger + binDecimal) > digits
    				IFB COPY(binDecimal, LENGTH(binDecimal) - 4) = "0000" THEN
    					binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - 4)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = binInteger + "." + binDecimal
    
    				binInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				binDecimal = COPY(tmp, POS(".", tmp) + 1)
    				totalDigits = LENGTH(binInteger + binDecimal)
    				IFB totalDigits > 64 THEN
    					isError = TRUE
    					msg = "64bitを超えたため変換できません"
    				ENDIF
    			ENDIF
    		ELSE
    			// 指定ビットに調整
    			IFB totalDigits <= digits THEN
    				binInteger = strPad(binInteger, digits - LENGTH(binDecimal), "0", LEFT)
    			ELSE
    				// 桁あふれ調整
    				totalDigits = LENGTH(binInteger + binDecimal)
    
    				len = LENGTH(binInteger + binDecimal)
    				WHILE LENGTH(binInteger) > 8 AND len > digits
    					IFB COPY(binInteger, 1, 4) = "0000" THEN
    						binInteger = COPY(binInteger, 5)
    						len = len - 4
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    	
    				WHILE LENGTH(binDecimal) > 4 AND LENGTH(binInteger + binDecimal) > digits
    				IFB COPY(binDecimal, LENGTH(binDecimal) - 4) = "0000" THEN
    					binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - 4)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = binInteger + "." + binDecimal
    
    				binInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				binDecimal = COPY(tmp, POS(".", tmp) + 1)
    				len = LENGTH(binInteger + binDecimal)
    				IFB len > digits THEN
    					DIM deleteLength = len - digits
    					IFB deleteLength = LENGTH(binDecimal) THEN
    						binDecimal = ""
    						msg = "指定ビット数にするため小数点以下を削除しました"
    					ELSEIF deleteLength < LENGTH(binDecimal) THEN
    						binDecimal = COPY(binDecimal, 1, LENGTH(binDecimal) - deleteLength)
    						msg = "指定ビット数にするため小数点以下の一部を削除しました"
    					ELSE
    						isError = TRUE
    						msg = "指定ビット数では変換できません"
    					ENDIF
    				ENDIF
    			ENDIF
    		ENDIF
    
    		bin = binInteger + IIF(binDecimal <> "", "." + binDecimal, "")
    
    		// (5) 入力値がマイナスのため、2進数をマイナス値に変換する
    		IFB negativeFlg THEN
    			// 1の補数
    			bin = bitNot(bin)
    			// 2の補数
    			DIM res = ""
    			DIM carry = "1"
    			FOR i = LENGTH(bin) TO 1 STEP -1
    				IFB carry = "1" THEN
    					SELECT COPY(bin, i, 1)
    						CASE "0"
    							res = "1" + res
    							carry = 0
    						CASE "1"
    							res = "0" + res
    						DEFAULT
    							res = COPY(bin, i, 1) + res
    					SELEND
    				ELSE
    					res = COPY(bin, i, 1) + res
    				ENDIF
    			NEXT
    			bin = res
    		ENDIF
    	ENDIF
    	IF errorMsg AND msg <> "" THEN PRINT msg
    	RESULT = IIF(isError, ERR_VALUE, bin)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   dec : 10進数 
    //   signFlg : 符号付きならばTrue 
    //   digits : 変換した16進数の桁数合わせを自動で行うかを示すブール値、もしくは桁数を表す数値(8,16,24,32,64のいずれか)を指定 
    //   errorMsg : エラーメッセージを出力するかを示すブール値 
    // 【戻り値】
    //   16進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION decToHex(dec, signFlg = FALSE, digits = FALSE, errorMsg = FALSE)
    	DIM hex = ""
    	DIM msg = ""
    	DIM isError = FALSE
    	DIM dec2hex[] = "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
    	DIM decimalFlg = IIF(POS(".", dec) <> 0, TRUE, FALSE)
    	DIM negativeFlg = IIF(dec < 0, TRUE, FALSE)
    	dec = ABS(dec)
    
    	// (1) 10進数を整数部と小数部に分ける
    	DIM integer = IIF(decimalFlg, COPY(dec, 1, POS(".", dec) - 1), dec)
    	DIM decimal = IIF(decimalFlg, "0." + COPY(dec, POS(".", dec) + 1), 0)
    
    	// (2) 10進数(整数部)を16進数に変換する。
    	REPEAT
    		hex = dec2hex[integer MOD 16] + hex
    		integer = INT(integer / 16)
    	UNTIL integer = 0
    
    	// (3) 10進数(小数部)を16進数に変換する。
    	IFB decimalFlg THEN
    		hex = hex + "."
    		DIM loop = 0
    		REPEAT
    			loop = loop + 1
    			decimal = decimal * 16
    			hex = hex + dec2hex[decimal]
    			offset = POWER(10, LENGTH(decimal) - POS(".", decimal))
    			decimal = (decimal * offset - INT(decimal) * offset) / offset
    		UNTIL decimal = 0 OR loop > 16
    	ENDIF
    
    	// digitsがFALSE以外なら
    	IFB digits THEN
    		// (4) 16進数の桁合わせを行う
    		DIM tmp = hex
    		DIM hexInteger = TOKEN(".", tmp)
    		DIM hexDecimal = TOKEN(".", tmp)
    		// 整数部、小数部を4bit単位になるまで拡張
    		// 整数部、4の倍数になるまで整数部の先頭に'0'を追加
    		// ※16進数は4bit単位なのでこの処理は不要
    		DIM digit = LENGTH(hexInteger + hexDecimal)
    		integer = INT(dec)
    		IF signFlg AND COPY(hexToBin(hexInteger), 1, 1) = "1" THEN hexInteger = "0" + hexInteger
    
    		IFB signFlg THEN
    			IFB integer >= -128 AND integer <= 127 THEN						// -2^7〜2^7-1
    				hexInteger = strRepeat("0", 2 - LENGTH(hexInteger)) + hexInteger
    			ELSEIF integer >= -32768 AND integer <= 32767 THEN				// -2^15〜2^15-1
    				hexInteger = strRepeat("0", 4 - LENGTH(hexInteger)) + hexInteger
    			ELSEIF integer >= -8388608 AND integer <= 8388607 THEN			// -2^23〜2^23-1
    				hexInteger = strRepeat("0", 6 - LENGTH(hexInteger)) + hexInteger
    			ELSEIF integer >= -2147783648 AND integer <= 2147483647 THEN	// -2^31〜2^31-1
    				hexInteger = strRepeat("0", 8 - LENGTH(hexInteger)) + hexInteger
    			ELSE
    				hexInteger = strRepeat("0", 16 - LENGTH(hexInteger)) + hexInteger
    			ENDIF
    		ELSE
    			IFB integer <= 255 THEN				// 2^8-1
    				hexInteger = strRepeat("0", 2 - LENGTH(hexInteger)) + hexInteger		
    			ELSEIF integer <= 65535 THEN		// 2^16-1
    				hexInteger = strRepeat("0", 4 - LENGTH(hexInteger)) + hexInteger		
    			ELSEIF integer <= 16777215 THEN		// 2^24-1
    				hexInteger = strRepeat("0", 6 - LENGTH(hexInteger)) + hexInteger
    			ELSEIF integer <= 4294967295 THEN	// 2^32-1
    				hexInteger = strRepeat("0", 8 - LENGTH(hexInteger)) + hexInteger
    			ELSE
    				hexInteger = strRepeat("0", 16 - LENGTH(hexInteger)) + hexInteger
    			ENDIF
    		ENDIF
    
    		totalDigits = LENGTH(hexInteger + hexDecimal) * 4
    
    		// 64bitを超えたら
    		IFB totalDigits > 64 THEN
    			DIM del32 = totalDigits - 32
    			DIM del64 = totalDigits - 64
    			IFB del32 = LENGTH(hexDecimal) * 4 AND digits <> 64 THEN
    				hexDecimal = ""
    				msg = "32bitを超えたため、小数点以下を削除しました"
    			ELSEIF del32 < LENGTH(hexDecimal) * 4 AND digits <> 64 THEN
    				hexDecimal = COPY(hexDecimal, 1, (LENGTH(hexDecimal) * 4 - del32) / 4)
    				msg = "32bitを超えたため、小数点以下の一部を削除しました"
    			ELSEIF del64 = LENGTH(hexDecimal) * 4 AND del64 <> 0 THEN
    				hexDecimal = ""
    				msg = "64bitを超えたため、小数点以下を削除しました"
    			ELSEIF del64 < LENGTH(hexDecimal) * 4 THEN
    				hexDecimal = COPY(hexDecimal, 1, (LENGTH(hexDecimal) * 4 - del64) / 4)
    				msg = "64bitを超えたため、小数点以下の一部を削除しました"
    			ELSE
    				isError = TRUE
    				msg = "64bitを超えるため、変換できません"
    			ENDIF
    		ENDIF
    
    		// 整数部、小数部の合計桁数を8,16,24,32,64bit単位になるまで拡張
    		digit = LENGTH(hexInteger + hexDecimal)
    		DIM array[] = 8, 16, 24, 32, 64
    		FOR item IN array
    			IFB digit <= item THEN
    				hexInteger = strRepeat("0", VAL(item)/4 - digit) + hexInteger
    				BREAK
    			ENDIF
    		NEXT
    
    		totalDigits = LENGTH(hexInteger + hexDecimal) * 4
    
    		IFB digits = TRUE THEN
    			// 桁合わせを自動調整
    			IFB totalDigits > 64 THEN
    				digit = LENGTH(hexInteger + hexDecimal)
    				WHILE LENGTH(hexInteger) > 8 AND digit > digits
    					IFB COPY(hexInteger, 1, 1) = "0" THEN
    						digit = digit - 1
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				WHILE LENGTH(hexDecimal) * 4 > 4 AND LENGTH(hexInteger + hexDecimal) > digits
    					IFB COPY(hexDecimal, LENGTH(hexDecimal) - 1) = "0" THEN
    						hexDecimal = COPY(hexDecimal, 1, LENGTH(hexDecimal) - 1)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = hexInteger + "." + hexDecimal
    				hexInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				hexDecimal = COPY(tmp, POS(".", tmp) + 1)
    				totalDigits = LENGTH(hexInteger + hexDecimal)
    				IFB totalDigits > 64 THEN
    					isError = TRUE
    					msg = "64bitを超えたため変換できません"
    				ENDIF
     			ENDIF
    		ELSE
    			// 指定ビットに調整
    			IFB totalDigits <= digits THEN
    				hexInteger = strPad(hexInteger, digits / 4 - LENGTH(hexDecimal), "0", LEFT)
    			ELSE
    				// 桁あふれ調整
    				totalDigits = LENGTH(hexInteger + hexDecimal)
    				digit = LENGTH(hexInteger + hexDecimal)
    				WHILE LENGTH(hexInteger) * 4 > 8 AND digit > digits
    					IFB COPY(hexInteger, 1, 1) = "0" THEN
    						hexInteger = COPY(hexInteger, 2)
    						digit = digit - 4 / 4
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				WHILE LENGTH(hexDecimal) * 4 > 4 AND LENGTH(hexInteger + hexDecimal) > digits
    					IFB COPY(hexDecimal, LENGTH(hexDecimal) - 1) = "0" THEN
    						hexDecimal = COPY(hexDecimal, 1, LENGTH(hexDecimal) - 1)
    					ELSE
    						BREAK
    					ENDIF
    				WEND
    				tmp = hexInteger + "." + hexDecimal
    				hexInteger = COPY(tmp, 1, POS(".", tmp) - 1)
    				hexDecimal = COPY(tmp, POS(".", tmp) + 1)
    				digit = LENGTH(hexInteger + hexDecimal) * 4
    				IFB digit > digits THEN
    					DIM deleteLength = digit - digits
    					IFB deleteLength = LENGTH(hexDecimal) * 4 THEN
    						hexDecimal = ""
    						msg = "指定ビット数にするため小数点以下を削除しました"
    					ELSEIF deleteLength < LENGTH(hexDecimal) * 4 THEN
    						hexDecimal = COPY(hexDecimal, 1, LENGTH(hexDecimal) - deleteLength / 4)
    						msg = "指定ビット数にするため小数点以下の一部を削除しました"
    					ELSE
    						isError = TRUE
    						msg = "指定ビット数では変換できません"
    					ENDIF
    				ENDIF
    			ENDIF
    		ENDIF
    
    		hex = hexInteger + IIF(hexDecimal <> "", "." + hexDecimal, "")
    		
    		// (5) 入力値がマイナスのため、16進数をマイナス値に変換する
    		IFB negativeFlg THEN
    			bin = hexToBin(hex)
    			// 1の補数
    			bin = bitNot(bin)
    			// 2の補数
    			DIM res = ""
    			DIM carry = "1"
    			FOR i = LENGTH(bin) TO 1 STEP -1
    				IFB carry = "1" THEN
    					SELECT COPY(bin, i, 1)
    						CASE "0"
    							res = "1" + res
    							carry = 0
    						CASE "1"
    							res = "0" + res
    						DEFAULT
    							res = COPY(bin, i, 1) + res
    					SELEND
    				ELSE
    					res = COPY(bin, i, 1) + res
    				ENDIF
    			NEXT
    			hex = binToHex(res)
    		ENDIF
    	ENDIF
    	IF errorMsg AND msg <> "" THEN PRINT msg
    	RESULT = IIF(isError, ERR_VALUE, hex)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   deg : 角度(度数法) 
    // 【戻り値】
    //   度数法から弧度法に変換した値 
    //////////////////////////////////////////////////
    FUNCTION degToRad(deg)
    	WITH Decimal
    		pr = .CtorPrecision
    		.CtorPrecision = 25
    		RESULT = .times(deg, .dividedBy(Decimal.PI, "180"))
    		.CtorPrecision = pr
    	ENDWITH
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   dividend : 被除数 
    //   divisor : 除数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION division(dividend, divisor)
    	DIM array[] = dividend, divisor
    	DIM g = GCD(array)
    	DIM tmp = divisor / g
    
    	DIM dat[] = 10, 5, 2
    	DIM position = 0
    
    	FOR i = 0 TO UBound(dat)
    		WHILE tmp MOD dat[i] = 0
    			tmp = INT(tmp / dat[i])
    			position = position + 1
    		WEND
    	NEXT
    
    	DIM repetend = ""
    	DIM res = ""
    	tmp = 0
    
    	i = 0
    	WHILE TRUE
    		DIM quotient = INT(dividend/divisor)
    		DIM remainder = dividend MOD divisor
    		IF i = position THEN tmp = remainder
    		IFB i > position THEN
    			repetend = repetend + quotient
    		ELSE
    			res = res + quotient
    			IF i = 0 THEN res = res + "."
    		ENDIF
    		IF i > position AND tmp = remainder THEN BREAK
    		dividend  = remainder * 10
    		i = i  + 1
    	WEND
    
    	RESULT = res + IIF(repetend<>0, "[" + repetend + "]", "")
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 相互変換させるバイナリデータ 
    // 【戻り値】
    //   変換したバイナリデータ 
    //////////////////////////////////////////////////
    FUNCTION Endian(str)
    	DIM len = LENGTH(str)
    	
    	IFB !isEven(len) THEN
    		str = "0" + str
    		len = len + 1
    	ENDIF
    	
    	DIM res = ""
    	FOR n = 1 TO len STEP 2
    		res = COPY(str, n, 2)  + res
    	NEXT
    	
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    //   digits : 小数点以下の桁数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION fixed(num, digits = EMPTY)
    	num = VAL(num)		// 指数表記を整える
    	IFB POS("E-", num) THEN
    		DIM mantissa = BETWEENSTR(num,, "E")
    		DIM exponent = BETWEENSTR(num, "E")		
    		RESULT = "0." + strRepeat("0", VAL(ABS(exponent) - 1)) + REPLACE(mantissa, ".", "")
    	ELSEIF POS("E", num) THEN
    		RESULT = ROUND(num, -1 *digits)
    		mantissa = BETWEENSTR(num,, "E")
    		exponent = BETWEENSTR(num, "E")
    		RESULT = REPLACE(mantissa, ".", "") + strRepeat("0", VAL(exponent) - decimalDigits(mantissa))
    	ELSEIF LENGTH(BETWEENSTR(num, ".")) < digits THEN
    		DIM keta = digits - LENGTH(BETWEENSTR(num, "."))
    		RESULT = num + IIF(POS(".", num) OR keta = 0, "", ".") + strRepeat("0", keta)
    	ELSE
    		IF digits = EMPTY THEN digits = LENGTH(BETWEENSTR(num, "."))
    		RESULT = "" + roundOff(num, digits)
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 丸め処理を行う値 
    // 【戻り値】
    //   負の方向に丸めた値 
    //////////////////////////////////////////////////
    FUNCTION floor(num)
    	RESULT = INT(num) + IIF(num < 0 AND num <> INT(num), -1, 0)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 最大公約数を求める数値を格納した配列 
    // 【戻り値】
    //   最大公約数 
    //////////////////////////////////////////////////
    FUNCTION GCD(array[])
    	DIM c = LENGTH(array)
    	DIM rem = array[c-1] MOD array[c-2]
    	IFB rem = 0 THEN
    		IFB LENGTH(array) = 2 THEN
    			RESULT = array[c-2]
    			EXIT
    		ENDIF
    		RESIZE(array, c-2)
    		RESULT = GCD(array)
    		EXIT
    	ENDIF
    	array[c-1] = array[c-2]
    	array[c-2] = rem
    	RESULT = GCD(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   path : ビットマップ画像のパス 
    // 【戻り値】
    //   配列。0:サイズ(Byte)、1:幅(px)、2:高さ(px)、3:ビットの深さ(bit) 
    //////////////////////////////////////////////////
    FUNCTION getBitmap(path)
    	CONST adTypeBinary = 1
    	DIM array[3]
    	
    	DIM Stream = CREATEOLEOBJ("ADODB.Stream")
    	Stream.Open()
    	Stream.Type = adTypeBinary
    	Stream.LoadFromFile(path)
    	DIM tmp = Stream.Read(30)
    	Stream.Close()
    
    	DIM fmt = ""
    	FOR i = 0 TO 1
    		fmt = fmt + decToHex(tmp[i])
    	NEXT
    
    	IFB fmt <> "424D" THEN
    		RESULT = ERR_VALUE
    		EXIT
    	ENDIF
    	
    	DIM size = ""
    	FOR i = 2 TO 5
    		hex = decToHex(tmp[i], FALSE)
    		size = size + IIF(LENGTH(hex) = 1, "0", "") + hex
    	NEXT
    	array[0] = hexToDec(Endian(size))
    	
    	DIM width = ""
    	FOR i = 18 TO 21
    		hex = decToHex(tmp[i], FALSE)
    		width = width + IIF(LENGTH(hex) = 1, "0", "") + hex
    	NEXT
    	array[1] = hexToDec(Endian(width))
    	
    	DIM height = ""
    	FOR i = 22 TO 25
    		hex = decToHex(tmp[i], FALSE)
    		height = height + IIF(LENGTH(hex) = 1, "0", "") + hex
    	NEXT
    	array[2] = hexToDec(Endian(height))
    	
    	DIM bit = ""
    	FOR i = 28 TO 29
    		hex = decToHex(tmp[i], FALSE)
    		bit = bit + IIF(LENGTH(hex) = 1, "0", "") + hex
    	NEXT
    	array[3] = hexToDec(Endian(bit))
    
    	RESULT = SLICE(array)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 日付(”YYYYMMDD” or “YYYY/MM/DD” or “YYYY-MM-DD” or “YYYYMMDDHHNNSS” or “YYYY/MM/DD HH:NN:SS”) 
    //   m : 第一引数の指定日からプラスマイナスm月とする 
    // 【戻り値】
    //   dateからm月後の月末の日付 
    //////////////////////////////////////////////////
    FUNCTION getEndOfMonth(date, m = 0)
    	date = dateAdd("m", m + 1, date)
    	GETTIME(0, date)
    	GETTIME(-G_TIME_DD, date)
    	RESULT = G_TIME_YY4 + "/" + G_TIME_MM2 + "/" + G_TIME_DD2
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 日付文字列(”YYYYMMDD” or “YYYY/MM/DD” or “YYYY-MM-DD” or “YYYYMMDDHHNNSS” or “YYYY/MM/DD HH:NN:SS”)もしくはシリアル値 
    //   type : 取得する曜日番号の種類を示す0〜3または11〜17の値。1と17は日曜日を1、2と11は月曜日を1とカウントします。11以降はExcel2010で追加された値で、互換性を保つために重複した値があります。 
    // 【戻り値】
    //   typeで指定した種類によって以下の値を返します。 : (0 : 0(日曜)〜6(土曜)、1 : 1(日曜)~7(土曜)、2 : 1(月曜)~7(日曜)、3 : 0(月曜)〜6(日曜)、11 : 1(月曜)~7(日曜)、12 : 1(火曜)~7(月曜)、13 : 1(水曜)~7(火曜)、14 : 1(木曜)~7(水曜)、15 : 1(金曜)~7(木曜)、16 : 1(土曜)~7(金曜)、17 : 1(日曜)~7(土曜)) 
    //////////////////////////////////////////////////
    FUNCTION getWeekday(date, type = 1)
    	IF VARTYPE(date) <> 258 THEN date = text(date, "yyyy/mm/dd")
    	GETTIME(0, date)
    	DIM w = G_TIME_WW
    	SELECT TRUE
    		CASE type = 0
    			RESULT = w
    		CASE type = 1
    			RESULT = w + 1
    		CASE type = 2
    			RESULT = IIF(w=0, 7, w)
    		CASE type = 3
    			RESULT = (w+6) MOD 7
    		CASE type >= 11
    			RESULT = ((getWeekday(date, 2) + 17 - type) MOD 7) + 1
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   hex : 16進数 
    // 【戻り値】
    //   2進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION hexToBin(hex)
    	HASHTBL hb
    	hb["0"] = "0000";	hb["1"] = "0001";	hb["2"] = "0010";	hb["3"] = "0011";
    	hb["4"] = "0100";	hb["5"] = "0101";	hb["6"] = "0110";	hb["7"] = "0111";
    	hb["8"] = "1000";	hb["9"] = "1001";	hb["A"] = "1010";	hb["B"] = "1011";
    	hb["C"] = "1100";	hb["D"] = "1101";	hb["E"] = "1110";	hb["F"] = "1111";
    	DIM bin = ""
    	IFB POS(".", hex) <> 0 THEN
    		FOR i = 1 TO LENGTH(hex)
    			DIM str = COPY(hex, i, 1)
    			IF str = "." THEN bin = bin + "."
    			bin = bin + hb[str]
    		NEXT
    	ELSE
    		FOR i = 1 TO LENGTH(hex)
    			bin = bin + hb[COPY(hex, i, 1)]
    		NEXT
    	ENDIF
    	RESULT = bin
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   hex : 16進数 
    //   signFlg : 符号付きならばTrue 
    // 【戻り値】
    //   10進数に変換した値 
    //////////////////////////////////////////////////
    FUNCTION hexToDec(hex, signFlg = TRUE)
    	hex = STRCONV(hex, SC_UPPERCASE)
    	DIM dec = 0
    	DIM decimalFlg = IIF(POS(".", hex) <> 0, TRUE, FALSE)
    	hex = IIF(LENGTH(REPLACE(hex,".", "" )) MOD 2 <> 0, "0", "") + hex
    	DIM negativeFlg = IIF(COPY(hexToBin(hex), 1, 1) = "1", TRUE, FALSE)
    	DIM sign = 1
    	IF negativeFlg AND signFlg THEN sign = -1
    	IFB negativeFlg AND signFlg THEN
    		DIM bin = hexToBin(hex)
    		DIM msb = IIF(decimalFlg, POS(".", bin) - 1, LENGTH(bin))
    		DIM lsb = IIF(decimalFlg, POS(".", bin) - LENGTH(bin), 0)
    		DIM a = hexToDec(hex, FALSE)
    		DIM b = POWER(2, msb) - 1
    		FOR i = -1 TO lsb STEP -1
    			b = b + POWER(2, i)
    		NEXT
    		DIM dec2 = bitXor(a, b) + POWER(2, lsb)
    		hex = decToHex(dec2)
    	ENDIF
    	integer = IIF(decimalFlg, COPY(hex, 1, POS(".", hex) - 1), hex)
    	decimal = IIF(decimalFlg, COPY(hex, POS(".", hex) + 1), "0")
    	FOR i = 1 TO LENGTH(integer)
    		s = COPY(hex, i, 1)
    		num = IIF(CHKNUM(s), s, ASC(s) - (ASC("A") - 10))
    		dec = dec + num * POWER(16, LENGTH(integer) - i)
    	NEXT
    	FOR i = 1 TO LENGTH(decimal)
    		s = COPY(decimal, i, 1)
    		num = IIF(CHKNUM(s), s, ASC(s) - (ASC("A") - 10))
    		dec = dec + num * POWER(16, -1 * i)
    	NEXT
    	RESULT = sign * dec
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : シリアル値もしくは時刻文字列 
    // 【戻り値】
    //   時刻から時間を表す0〜23の範囲の値 
    //////////////////////////////////////////////////
    FUNCTION Hour(serial)
    	IF VARTYPE(serial) = 258 THEN serial = timeValue(serial)
    	RESULT = INT(serial * 24) MOD 24
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   expr : 評価する式 
    //   truepart : 評価した式がTrueのときに返す値 
    //   falsepart : 評価した式がFalseのときに返す値 
    // 【戻り値】
    //   truepart : 評価した式がTrueのとき、falsepart : 評価した式がFalseのとき 
    //////////////////////////////////////////////////
    FUNCTION IIF(expr, truepart, falsepart)
    	IFB EVAL(expr) THEN
    		RESULT = truepart
    	ELSE
    		RESULT = falsepart
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION isArray(variable[])
    	RESULT = IIF(VARTYPE(variable) AND 8192, TRUE, FALSE)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   date : 存在するかを調べる日付文字列。YYYYMMDD or YYYY/MM/DD or YYYY-MM-DDのいずれかの形式。 
    // 【戻り値】
    //   TRUE : 日付として認識できる、FALSE : 日付として認識できない 
    //////////////////////////////////////////////////
    FUNCTION isDate(date)
    	TRY
    		GETTIME(0, date)
    		RESULT = TRUE
    	EXCEPT
    		RESULT = FALSE
    	ENDTRY
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   数値 : 整数 
    // 【戻り値】
    //   True : 偶数、False : 偶数以外の数値、ERR_VALUE : 数値以外 
    //////////////////////////////////////////////////
    FUNCTION isEven(n)
    	IFB VAL(n) = n THEN
    		RESULT = IIF(INT(n) MOD 2 = 0, TRUE, FALSE)
    	ELSE
    		RESULT = ERR_VALUE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION isFloat(variable)
    	IFB VAL(variable) <> ERR_VALUE THEN
    		RESULT = IIF((VARTYPE(variable) = VAR_SINGLE OR VARTYPE(variable) = VAR_DOUBLE) AND INT(variable) <> variable, TRUE, FALSE)
    	ELSE
    		RESULT = FALSE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   variable : 型を調べる変数 
    // 【戻り値】
    //    : TRUE : 与えられた変数が文字列型である、 
    //   FALSE : 与えられた変数が文字列型でない、 : 
    //////////////////////////////////////////////////
    FUNCTION isString(variable)
    	RESULT = IIF(VARTYPE(variable) = VAR_ASTR OR VARTYPE(variable) = VAR_USTR, TRUE, FALSE)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   text : JSONとして解析する文字列 
    //   value : JSON文字列に変換する値 
    //   reviver : 使用不可 
    //   replacer : 使用不可 
    //   space : 出力するJSON文字列に空白を挿入するための文字列もしくは数値 
    // 【戻り値】
    //    : Parse : JSON文字列をオブジェクトに変換、 
    //   Stringify : オブジェクトをJSON文字列に変換、 : 
    //////////////////////////////////////////////////
    MODULE JSON
    	DIM SC, CodeObject
    	PROCEDURE JSON
    		SC = CREATEOLEOBJ("ScriptControl")
    		WITH SC
    			.Language = "JScript"
    			.ExecuteStatement(json2)
    			.ExecuteStatement(statement)
    			CodeObject = .CodeObject
    		ENDWITH
    	FEND
    	FUNCTION Parse(text, reviver = NULL)
    		RESULT = CodeObject.JSON.parse(text, reviver)
    	FEND
    	FUNCTION Stringify(value, replacer = "", space = FALSE)
    		RESULT = CodeObject.JSON.stringify(value, NULL, replacer)
    		IF space THEN RESULT = REPLACE(RESULT, CHR(10), "<#CR>")
    	FEND
    ENDMODULE
    
    TEXTBLOCK statement
    Array.prototype.Item = function(i, value){
    	if(value === undefined) return this[i]; this[i] = value;
    }
    Array.prototype.item = Array.prototype.Item;
    ENDTEXTBLOCK
    
    TEXTBLOCK json2
    //  json2.js
    //  2023-05-10
    //  Public Domain.
    //  NO WARRANTY EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
    
    //  USE YOUR OWN COPY. IT IS EXTREMELY UNWISE TO LOAD CODE FROM SERVERS YOU DO
    //  NOT CONTROL.
    
    //  This file creates a global JSON object containing two methods: stringify
    //  and parse. This file provides the ES5 JSON capability to ES3 systems.
    //  If a project might run on IE8 or earlier, then this file should be included.
    //  This file does nothing on ES5 systems.
    
    //      JSON.stringify(value, replacer, space)
    //          value       any JavaScript value, usually an object or array.
    //          replacer    an optional parameter that determines how object
    //                      values are stringified for objects. It can be a
    //                      function or an array of strings.
    //          space       an optional parameter that specifies the indentation
    //                      of nested structures. If it is omitted, the text will
    //                      be packed without extra whitespace. If it is a number,
    //                      it will specify the number of spaces to indent at each
    //                      level. If it is a string (such as "\t" or " "),
    //                      it contains the characters used to indent at each level.
    //          This method produces a JSON text from a JavaScript value.
    //          When an object value is found, if the object contains a toJSON
    //          method, its toJSON method will be called and the result will be
    //          stringified. A toJSON method does not serialize: it returns the
    //          value represented by the name/value pair that should be serialized,
    //          or undefined if nothing should be serialized. The toJSON method
    //          will be passed the key associated with the value, and this will be
    //          bound to the value.
    
    //          For example, this would serialize Dates as ISO strings.
    
    //              Date.prototype.toJSON = function (key) {
    //                  function f(n) {
    //                      // Format integers to have at least two digits.
    //                      return (n < 10)
    //                          ? "0" + n
    //                          : n;
    //                  }
    //                  return this.getUTCFullYear()   + "-" +
    //                       f(this.getUTCMonth() + 1) + "-" +
    //                       f(this.getUTCDate())      + "T" +
    //                       f(this.getUTCHours())     + ":" +
    //                       f(this.getUTCMinutes())   + ":" +
    //                       f(this.getUTCSeconds())   + "Z";
    //              };
    
    //          You can provide an optional replacer method. It will be passed the
    //          key and value of each member, with this bound to the containing
    //          object. The value that is returned from your method will be
    //          serialized. If your method returns undefined, then the member will
    //          be excluded from the serialization.
    
    //          If the replacer parameter is an array of strings, then it will be
    //          used to select the members to be serialized. It filters the results
    //          such that only members with keys listed in the replacer array are
    //          stringified.
    
    //          Values that do not have JSON representations, such as undefined or
    //          functions, will not be serialized. Such values in objects will be
    //          dropped; in arrays they will be replaced with null. You can use
    //          a replacer function to replace those with JSON values.
    
    //          JSON.stringify(undefined) returns undefined.
    
    //          The optional space parameter produces a stringification of the
    //          value that is filled with line breaks and indentation to make it
    //          easier to read.
    
    //          If the space parameter is a non-empty string, then that string will
    //          be used for indentation. If the space parameter is a number, then
    //          the indentation will be that many spaces.
    
    //          Example:
    
    //          text = JSON.stringify(["e", {pluribus: "unum"}]);
    //          // text is '["e",{"pluribus":"unum"}]'
    
    //          text = JSON.stringify(["e", {pluribus: "unum"}], null, "\t");
    //          // text is '[\n\t"e",\n\t{\n\t\t"pluribus": "unum"\n\t}\n]'
    
    //          text = JSON.stringify([new Date()], function (key, value) {
    //              return this[key] instanceof Date
    //                  ? "Date(" + this[key] + ")"
    //                  : value;
    //          });
    //          // text is '["Date(---current time---)"]'
    
    //      JSON.parse(text, reviver)
    //          This method parses a JSON text to produce an object or array.
    //          It can throw a SyntaxError exception.
    
    //          The optional reviver parameter is a function that can filter and
    //          transform the results. It receives each of the keys and values,
    //          and its return value is used instead of the original value.
    //          If it returns what it received, then the structure is not modified.
    //          If it returns undefined then the member is deleted.
    
    //          Example:
    
    //          // Parse the text. Values that look like ISO date strings will
    //          // be converted to Date objects.
    
    //          myData = JSON.parse(text, function (key, value) {
    //              var a;
    //              if (typeof value === "string") {
    //                  a =
    //   /^(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}(?:\.\d*)?)Z$/.exec(value);
    //                  if (a) {
    //                      return new Date(Date.UTC(
    //                         +a[1], +a[2] - 1, +a[3], +a[4], +a[5], +a[6]
    //                      ));
    //                  }
    //                  return value;
    //              }
    //          });
    
    //          myData = JSON.parse(
    //              "[\"Date(09/09/2001)\"]",
    //              function (key, value) {
    //                  var d;
    //                  if (
    //                      typeof value === "string"
    //                      && value.slice(0, 5) === "Date("
    //                      && value.slice(-1) === ")"
    //                  ) {
    //                      d = new Date(value.slice(5, -1));
    //                      if (d) {
    //                          return d;
    //                      }
    //                  }
    //                  return value;
    //              }
    //          );
    
    //  This is a reference implementation. You are free to copy, modify, or
    //  redistribute.
    
    /*jslint
        eval, for, this
    */
    
    /*property
        JSON, apply, call, charCodeAt, getUTCDate, getUTCFullYear, getUTCHours,
        getUTCMinutes, getUTCMonth, getUTCSeconds, hasOwnProperty, join,
        lastIndex, length, parse, prototype, push, replace, slice, stringify,
        test, toJSON, toString, valueOf
    */
    
    
    // Create a JSON object only if one does not already exist. We create the
    // methods in a closure to avoid creating global variables.
    
    if (typeof JSON !== "object") {
        JSON = {};
    }
    
    (function () {
        "use strict";
    
        var rx_one = /^[\],:{}\s]*$/;
        var rx_two = /\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g;
        var rx_three = /"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g;
        var rx_four = /(?:^|:|,)(?:\s*\[)+/g;
        var rx_escapable = /[\\"\u0000-\u001f\u007f-\u009f\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g;
        var rx_dangerous = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g;
    
        function f(n) {
            // Format integers to have at least two digits.
            return (n < 10)
                ? "0" + n
                : n;
        }
    
        function this_value() {
            return this.valueOf();
        }
    
        if (typeof Date.prototype.toJSON !== "function") {
    
            Date.prototype.toJSON = function () {
    
                return isFinite(this.valueOf())
                    ? (
                        this.getUTCFullYear()
                        + "-"
                        + f(this.getUTCMonth() + 1)
                        + "-"
                        + f(this.getUTCDate())
                        + "T"
                        + f(this.getUTCHours())
                        + ":"
                        + f(this.getUTCMinutes())
                        + ":"
                        + f(this.getUTCSeconds())
                        + "Z"
                    )
                    : null;
            };
    
            Boolean.prototype.toJSON = this_value;
            Number.prototype.toJSON = this_value;
            String.prototype.toJSON = this_value;
        }
    
        var gap;
        var indent;
        var meta;
        var rep;
    
    
        function quote(string) {
    
    // If the string contains no control characters, no quote characters, and no
    // backslash characters, then we can safely slap some quotes around it.
    // Otherwise we must also replace the offending characters with safe escape
    // sequences.
    
            rx_escapable.lastIndex = 0;
            return rx_escapable.test(string)
                ? "\"" + string.replace(rx_escapable, function (a) {
                    var c = meta[a];
                    return typeof c === "string"
                        ? c
                        : "\\u" + ("0000" + a.charCodeAt(0).toString(16)).slice(-4);
                }) + "\""
                : "\"" + string + "\"";
        }
    
    
        function str(key, holder) {
    
    // Produce a string from holder[key].
    
            var i;          // The loop counter.
            var k;          // The member key.
            var v;          // The member value.
            var length;
            var mind = gap;
            var partial;
            var value = holder[key];
    
    // If the value has a toJSON method, call it to obtain a replacement value.
    
            if (
                value
                && typeof value === "object"
                && typeof value.toJSON === "function"
            ) {
                value = value.toJSON(key);
            }
    
    // If we were called with a replacer function, then call the replacer to
    // obtain a replacement value.
    
            if (typeof rep === "function") {
                value = rep.call(holder, key, value);
            }
    
    // What happens next depends on the value's type.
    
            switch (typeof value) {
            case "string":
                return quote(value);
    
            case "number":
    
    // JSON numbers must be finite. Encode non-finite numbers as null.
    
                return (isFinite(value))
                    ? String(value)
                    : "null";
    
            case "boolean":
            case "null":
    
    // If the value is a boolean or null, convert it to a string. Note:
    // typeof null does not produce "null". The case is included here in
    // the remote chance that this gets fixed someday.
    
                return String(value);
    
    // If the type is "object", we might be dealing with an object or an array or
    // null.
    
            case "object":
    
    // Due to a specification blunder in ECMAScript, typeof null is "object",
    // so watch out for that case.
    
                if (!value) {
                    return "null";
                }
    
    // Make an array to hold the partial results of stringifying this object value.
    
                gap += indent;
                partial = [];
    
    // Is the value an array?
    
                if (Object.prototype.toString.apply(value) === "[object Array]") {
    
    // The value is an array. Stringify every element. Use null as a placeholder
    // for non-JSON values.
    
                    length = value.length;
                    for (i = 0; i < length; i += 1) {
                        partial[i] = str(i, value) || "null";
                    }
    
    // Join all of the elements together, separated with commas, and wrap them in
    // brackets.
    
                    v = partial.length === 0
                        ? "[]"
                        : gap
                            ? (
                                "[\n"
                                + gap
                                + partial.join(",\n" + gap)
                                + "\n"
                                + mind
                                + "]"
                            )
                            : "[" + partial.join(",") + "]";
                    gap = mind;
                    return v;
                }
    
    // If the replacer is an array, use it to select the members to be stringified.
    
                if (rep && typeof rep === "object") {
                    length = rep.length;
                    for (i = 0; i < length; i += 1) {
                        if (typeof rep[i] === "string") {
                            k = rep[i];
                            v = str(k, value);
                            if (v) {
                                partial.push(quote(k) + (
                                    (gap)
                                        ? ": "
                                        : ":"
                                ) + v);
                            }
                        }
                    }
                } else {
    
    // Otherwise, iterate through all of the keys in the object.
    
                    for (k in value) {
                        if (Object.prototype.hasOwnProperty.call(value, k)) {
                            v = str(k, value);
                            if (v) {
                                partial.push(quote(k) + (
                                    (gap)
                                        ? ": "
                                        : ":"
                                ) + v);
                            }
                        }
                    }
                }
    
    // Join all of the member texts together, separated with commas,
    // and wrap them in braces.
    
                v = partial.length === 0
                    ? "{}"
                    : gap
                        ? "{\n" + gap + partial.join(",\n" + gap) + "\n" + mind + "}"
                        : "{" + partial.join(",") + "}";
                gap = mind;
                return v;
            }
        }
    
    // If the JSON object does not yet have a stringify method, give it one.
    
        if (typeof JSON.stringify !== "function") {
            meta = {    // table of character substitutions
                "\b": "\\b",
                "\t": "\\t",
                "\n": "\\n",
                "\f": "\\f",
                "\r": "\\r",
                "\"": "\\\"",
                "\\": "\\\\"
            };
            JSON.stringify = function (value, replacer, space) {
    
    // The stringify method takes a value and an optional replacer, and an optional
    // space parameter, and returns a JSON text. The replacer can be a function
    // that can replace values, or an array of strings that will select the keys.
    // A default replacer method can be provided. Use of the space parameter can
    // produce text that is more easily readable.
    
                var i;
                gap = "";
                indent = "";
    
    // If the space parameter is a number, make an indent string containing that
    // many spaces.
    
                if (typeof space === "number") {
                    for (i = 0; i < space; i += 1) {
                        indent += " ";
                    }
    
    // If the space parameter is a string, it will be used as the indent string.
    
                } else if (typeof space === "string") {
                    indent = space;
                }
    
    // If there is a replacer, it must be a function or an array.
    // Otherwise, throw an error.
    
                rep = replacer;
                if (replacer && typeof replacer !== "function" && (
                    typeof replacer !== "object"
                    || typeof replacer.length !== "number"
                )) {
                    throw new Error("JSON.stringify");
                }
    
    // Make a fake root object containing our value under the key of "".
    // Return the result of stringifying the value.
    
                return str("", {"": value});
            };
        }
    
    
    // If the JSON object does not yet have a parse method, give it one.
    
        if (typeof JSON.parse !== "function") {
            JSON.parse = function (text, reviver) {
    
    // The parse method takes a text and an optional reviver function, and returns
    // a JavaScript value if the text is a valid JSON text.
    
                var j;
    
                function walk(holder, key) {
    
    // The walk method is used to recursively walk the resulting structure so
    // that modifications can be made.
    
                    var k;
                    var v;
                    var value = holder[key];
                    if (value && typeof value === "object") {
                        for (k in value) {
                            if (Object.prototype.hasOwnProperty.call(value, k)) {
                                v = walk(value, k);
                                if (v !== undefined) {
                                    value[k] = v;
                                } else {
                                    delete value[k];
                                }
                            }
                        }
                    }
                    return reviver.call(holder, key, value);
                }
    
    
    // Parsing happens in four stages. In the first stage, we replace certain
    // Unicode characters with escape sequences. JavaScript handles many characters
    // incorrectly, either silently deleting them, or treating them as line endings.
    
                text = String(text);
                rx_dangerous.lastIndex = 0;
                if (rx_dangerous.test(text)) {
                    text = text.replace(rx_dangerous, function (a) {
                        return (
                            "\\u"
                            + ("0000" + a.charCodeAt(0).toString(16)).slice(-4)
                        );
                    });
                }
    
    // In the second stage, we run the text against regular expressions that look
    // for non-JSON patterns. We are especially concerned with "()" and "new"
    // because they can cause invocation, and "=" because it can cause mutation.
    // But just to be safe, we want to reject all unexpected forms.
    
    // We split the second stage into 4 regexp operations in order to work around
    // crippling inefficiencies in IE's and Safari's regexp engines. First we
    // replace the JSON backslash pairs with "@" (a non-JSON character). Second, we
    // replace all simple value tokens with "]" characters. Third, we delete all
    // open brackets that follow a colon or comma or that begin the text. Finally,
    // we look to see that the remaining characters are only whitespace or "]" or
    // "," or ":" or "{" or "}". If that is so, then the text is safe for eval.
    
                if (
                    rx_one.test(
                        text
                            .replace(rx_two, "@")
                            .replace(rx_three, "]")
                            .replace(rx_four, "")
                    )
                ) {
    
    // In the third stage we use the eval function to compile the text into a
    // JavaScript structure. The "{" operator is subject to a syntactic ambiguity
    // in JavaScript: it can begin a block or an object literal. We wrap the text
    // in parens to eliminate the ambiguity.
    
                    j = eval("(" + text + ")");
    
    // In the optional fourth stage, we recursively walk the new structure, passing
    // each name/value pair to a reviver function for possible transformation.
    
                    return (typeof reviver === "function")
                        ? walk({"": j}, "")
                        : j;
                }
    
    // If the text is not JSON parseable, then a SyntaxError is thrown.
    
                throw new SyntaxError("JSON.parse");
            };
        }
    }());
    ENDTEXTBLOCK
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    //   rank : 抽出する値の大きい方から数えた順位 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION large(array[], rank)
    	IFB rank >= 1 AND rank <= LENGTH(array) THEN
    		shellSort(array)
    		RESULT = array[LENGTH(array) - rank]
    	ELSE
    		RESULT = ERR_VALUE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 正規表現による検索の対象となる文字列 
    //   Pattern : 正規表現で使用するパターンを設定 
    //   IgnoreCase : 大文字・小文字を区別しない場合はTrue、区別する場合はFalse 
    //   Global : 文字列全体を検索する場合はTrue、しない場合はFalse 
    // 【戻り値】
    //   正規表現で検索した結果をMatchesコレクションとして返します。 
    //////////////////////////////////////////////////
    FUNCTION reExecute(str, Pattern, IgnoreCase = TRUE, Global = TRUE)
    	DIM re = CREATEOLEOBJ("VBScript.RegExp")
    	re.Pattern = Pattern
    	re.IgnoreCase = IgnoreCase
    	re.Global = Global
    	RESULT = re.Execute(str)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 正規表現による検索の対象となる文字列 
    //   Pattern : 正規表現で使用するパターンを設定 
    //   IgnoreCase : 大文字・小文字を区別しない場合はTrue、区別する場合はFalse 
    //   Global : 文字列全体を検索する場合はTrue、しない場合はFalse 
    // 【戻り値】
    //   正規表現にマッチするかどうかを示すブール値 
    //////////////////////////////////////////////////
    FUNCTION reTest(str, Pattern, IgnoreCase = TRUE, Global = TRUE)
    	DIM re = CREATEOLEOBJ("VBScript.RegExp")
    	re.Pattern = Pattern
    	re.IgnoreCase = IgnoreCase
    	re.Global = Global
    	RESULT = re.Test(str)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 数値 
    //   digit : 四捨五入する位置(マイナスで整数方向) 
    // 【戻り値】
    //   四捨五入した値 
    //////////////////////////////////////////////////
    FUNCTION roundOff(num, digit = 0)
    	DIM sign = sign(num)
    	num = ABS(num)
    	DIM offset = POWER(10, digit)
    	DIM n = num * offset - INT(num * offset)
    	RESULT = sign * IIF(n >= 0.5, CEIL(num * offset) / offset, INT(num * offset) / offset)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : 時間を表すシリアル値を指定 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION Second(serial)
    	RESULT = REPLACE(FORMAT(INT(serial * 86400) MOD 60, 2), " ", "0")
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : ソートする数値を格納した配列。参照引数。 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE shellSort(Var array[])
    	DIM i, j, inc, temp
    	
    	inc = 4
    	WHILE INT(inc) > 0
    		FOR i = 0 TO UBound(array)
    			j = i
    			temp = array[i]
    			WHILE j >= inc AND array[zcut(j-inc)] > temp
    				array[j] = array[j-inc]
    				j = j - inc
    			WEND
    			array[j] = temp
    		NEXT
    		IFB inc / 2 <> 0 THEN
    			inc = inc / 2
    		ELSEIF inc = 1 THEN
    			inc = 0
    		ELSE
    			inc = 1
    		ENDIF
    	WEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   num : 符号を求める数値 
    // 【戻り値】
    //   1 : 正の数、0 : ゼロ、-1 : 負の数、ERR_VALUE : それ以外 
    //////////////////////////////////////////////////
    FUNCTION sign(num)
    	SELECT TRUE
    		CASE !CHKNUM(num)
    			RESULT = ERR_VALUE
    		CASE num > 0
    			RESULT = 1
    		CASE num = 0
    			RESULT = 0
    		CASE num < 0
    			RESULT = -1
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   array : 配列 
    //   rank : 抽出する値の小さい方から数えた順位 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    FUNCTION small(array[], rank)
    	IFB rank >= 1 AND rank <= LENGTH(array) THEN
    		shellSort(array)
    		RESULT = array[rank-1]
    	ELSE
    		RESULT = ERR_VALUE
    	ENDIF
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   input : 入力文字列 
    //   length : 埋めたあとの長さ 
    //   str : 埋める文字 
    //   type : 埋める方向 
    // 【戻り値】
    //   指定文字で埋めた文字列 
    //////////////////////////////////////////////////
    FUNCTION strPad(input, length, str = " ", type = RIGHT)
    	DIM s = ""
    	SELECT type
    		CASE LEFT
    			FOR i = 1 TO CEIL((length - LENGTH(input)) / LENGTH(str))
    				s = s + str
    			NEXT
    			input = COPY(s, 1, length - LENGTH(input)) + input
    		CASE RIGHT
    			FOR i = 1 TO CEIL((length - LENGTH(input)) / LENGTH(str))
    				s = s + str
    			NEXT
    			input = input + COPY(s, 1, length - LENGTH(input))
    	SELEND
    	RESULT = input
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   inputs : 繰り返す文字列 
    //   multiplier : inputsを繰り返す回数 
    // 【戻り値】
    //   inputsをmultiplier回を繰り返した文字列を返します 
    //////////////////////////////////////////////////
    FUNCTION strRepeat(inputs, multiplier)
    	DIM res = ""
    	FOR n = 1 TO multiplier
    		res = res + inputs
    	NEXT
    	RESULT = res
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   a : bと交換する値。参照引数。 
    //   b : aと交換する値。参照引数。 
    // 【戻り値】
    //   
    //////////////////////////////////////////////////
    PROCEDURE swap(Var a, Var b)
    	DIM tmp = a
    	a = b
    	b = tmp
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   serial : シリアル値 
    //   format : フォーマット 
    // 【戻り値】
    //   数値を表示書式に基づいて変換した文字列 
    //////////////////////////////////////////////////
    FUNCTION text(serial, format, hour12 = FALSE)
    	HASHTBL startDate
    	startDate["明治"] = "1868/01/25"
    	startDate["大正"] = "1912/07/30"
    	startDate["昭和"] = "1926/12/25"
    	startDate["平成"] = "1989/01/08"
    	startDate["令和"] = "2019/05/01"
    	
    	DIM baseDate = "1899/12/30"
    	serial = VAL(serial)
    	SELECT TRUE
    		CASE reTest(format, "\[h+\]")
    			Matches = reExecute(format, "\[(h+)\]")
    			DIM hour = iif(hour12, Hour(serial) MOD 12, Hour(serial))
    			RESULT = text(hour, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE reTest(format, "^h+$")
    			Matches = reExecute(format, "^(h+)$")
    			hour = iif(hour12, Hour(serial) MOD 12, Hour(serial))
    			RESULT = text(hour MOD 24, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE reTest(format, "\[m+\]")
    			Matches = reExecute(format, "\[(m+)\]")
    			RESULT = text(serial * 1440, strRepeat("0", LENGTH(Matches.Item(0).SubMatches(0))))
    		CASE format = "m"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_MM, "0")
    		CASE format = "mm"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_MM2
    		CASE format = "n"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_NN
    		CASE format = "nn"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_NN2
    		CASE format = "s"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_SS, "0")
    		CASE format = "ss"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_SS2
    		CASE format = "yyyy"
    			GETTIME(serial, baseDate)
    			RESULT = G_TIME_YY4
    		CASE format = "yy"
    			GETTIME(serial, baseDate)
    			RESULT = COPY(G_TIME_YY4, 3, 2)
    		CASE format = "e"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 2018
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1988
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1925
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1911
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(serial, "yyyy") - 1867
    			SELEND
    		CASE format = "ee"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 2018, "00")
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1988, "00")
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1925, "00")
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1911, "00")
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0
    					RESULT = text(text(serial, "yyyy") - 1867, "00")
    			SELEND
    		CASE format = "g"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "R"
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "H"
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "S"
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "T"
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "M"
    			SELEND
    		CASE format = "gg"
    			RESULT = COPY(text(serial, "ggg"), 1, 1)
    		CASE format = "ggg"
    			SELECT TRUE
    				CASE dateDiff("d", startDate["令和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "令和"
    				CASE dateDiff("d", startDate["平成"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "平成"
    				CASE dateDiff("d", startDate["昭和"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "昭和"
    				CASE dateDiff("d", startDate["大正"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "大正"
    				CASE dateDiff("d", startDate["明治"], text(serial, "yyyy/mm/dd")) >= 0;		RESULT = "明治"
    			SELEND
    		CASE format = "mmmmm"
    			RESULT = COPY(text(serial, "mmmm"), 1, 1)
    		CASE format = "mmmm"
    			DIM month[] = "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"
    			RESULT = month[text(serial, "m") - 1]
    		CASE format = "mmm"
    			RESULT = COPY(text(serial, "mmmm"), 1, 3)
    		CASE format = "dd"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_DD2, "00")
    		CASE format = "d"
    			GETTIME(serial, baseDate)
    			RESULT = text(G_TIME_DD, "0")
    		CASE reTest(format, "^[ad]{3,4}$")
    			Matches = reExecute(format, "([ad]{3,4})")
    			GETTIME(serial, baseDate)
    			DIM aaa[] = "日", "月", "火", "水", "木", "金", "土"
    			DIM aaaa[] = "日曜日", "月曜日", "火曜日", "水曜日", "木曜日", "金曜日", "土曜日"
    			DIM ddd[] = "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
    			DIM dddd[] = "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday";
    			RESULT = EVAL(Matches.Item(0).SubMatches(0) + "[" + getWeekday(G_TIME_WW, 1) + "]")
    		CASE reTest(format, "(0+\.?0+)?%")
    			Matches = reExecute(format, "(0+\.?0+)?%")
    			RESULT = text(serial * 100, Matches.Item(0).SubMatches(0)) + "%"
    		CASE reTest(format, "^\[DBNum\d{1,4}\](.*?)$")
    			Matches = reExecute(format, "^\[DBNum(\d{1,4})\](.*?)$")
    			DIM value = VAL(Matches.Item(0).SubMatches(0))
    			DIM sss = text(serial, Matches.Item(0).SubMatches(1))
    			Matches = reExecute(sss, "(\D+)?(\d+)(\D+)?")
    			DIM res = ""
    			FOR m = 0 TO Matches.Count - 1
    				serial = Matches.Item(m).SubMatches(1)
    				SELECT value
    					CASE 1, 2
    						DIM n[][9] = "〇", "一", "二", "三", "四", "五", "六", "七", "八", "九", + _
    										"", "壱", "弐", "参", "四", "伍", "六", "七", "八", "九"
    						DIM a[][3] = "", "十", "百", "千", + _
    										"", "拾", "百", "阡"
    						DIM b[][3] = "", "万", "億", "兆", + _
    										"", "萬", "億", "兆"
    						DIM r = ""
    						DIM j = 0
    						type = value - 1
    						REPEAT
    							DIM str = ""
    							DIM n4 = serial MOD 10000
    							FOR i = LENGTH(n4) TO 1 STEP -1
    								s = COPY(n4, i, 1)
    								IFB s = 1 AND a[type][LENGTH(n4)-i] <> "" THEN
    									str = IIF(s, a[type][LENGTH(n4)-i], "") + str
    								ELSE	
    									str = n[type][s] + IIF(s, a[type][LENGTH(n4)-i], "") + str
    								ENDIF
    							NEXT
    							IF str <> "" THEN r = str + b[type][j] + r
    							j = j + 1
    							serial = INT(serial / 10000)
    						UNTIL serial = 0
    						res = res + Matches.Item(m).SubMatches(0) + r + Matches.Item(m).SubMatches(2)
    					CASE 3
    						res = res + Matches.Item(m).SubMatches(0) + STRCONV(serial, SC_FULLWIDTH) + Matches.Item(m).SubMatches(2)
    					CASE 4
    						res = res + Matches.Item(m).SubMatches(0) + STRCONV(serial, SC_HALFWIDTH) + Matches.Item(m).SubMatches(2)
    				SELEND
    			NEXT
    			RESULT = res
    		CASE reTest(format, "^(.*?)(AM\/PM|am\/pm|A\/P|a\/p)(.*?)$")
    			Matches = reExecute(format, "^(.*?)(AM\/PM|am\/pm|A\/P|a\/p)(.*?)$")
    			DIM array = SPLIT(Matches.Item(0).SubMatches(1), "/")
    			ampm = array[IIF(serial - INT(serial) >= 0.5, 1, 0)]
    			hour12 = TRUE
    			res = ""
    			WITH Matches.Item(0)
    				res = text(serial, .SubMatches(0), hour12) + ampm + text(serial, .SubMatches(2), hour12)
    			ENDWITH
    			RESULT = res
    		CASE reTest(format, "([^ymdagehns]{0,})?(([ymdagehns])\3{0,})([^ymdagehns]+)?")
    			Matches = reExecute(format, "([^ymdagehns]{0,})?(([ymdagehns])\3{0,})([^ymdagehns]+)?")
    			FOR n = 0 TO Matches.Count - 1
    				IF n = 0 THEN res = Matches.Item(n).SubMatches(0)
    			NEXT
    			FOR n = 0 TO Matches.Count - 1
    				WITH Matches.Item(n)
    					res = res + text(serial, .SubMatches(1), hour12) + .SubMatches(3)
    				ENDWITH
    			NEXT
    			RESULT = res
    		CASE format = "0/0"
    			DIM separator = POS(".", serial)
    			DIM g = 0
    			IFB separator <> 0 THEN
    				DIM keta = LENGTH(serial)
    				DIM shift = POWER(10, keta - separator)
    				IFB shift >= POWER(10, 15) THEN
    					DIM position = 0
    					FOR i = 0 TO 14
    						IFB serial * POWER(10, i) - serial >= 1 THEN
    							position = i
    							BREAK
    						ENDIF
    					NEXT
    					tmp = serial * POWER(10, position)
    					FOR i = 1 TO 15
    						r = (tmp * POWER(10, i)) / serial - (tmp / serial)
    						a1 = tmp * POWER(10, i) - tmp
    						IF a1 = INT(a1) THEN BREAK 
    					NEXT
    					DIM frac[] = a1, r
    					g = GCD(frac)
    					RESULT = (a1/g) + "/" + (r/g)
    				ELSE
    					DIM molecule = serial * shift	// 分子
    					DIM denominator = shift		// 分母
    					DIM nums[] = molecule, denominator
    					g = GCD(nums)
    					molecule = molecule / g
    					denominator = denominator / g
    					RESULT = molecule + "/" + denominator
    				ENDIF
    			ELSE
    				RESULT = serial + "/1"
    			ENDIF
    		CASE reTest(format, "(0+)\.?(0+)?") AND UBound(SPLIT(format, ".")) <= 1 
    			Matches = reExecute(format, "(0+)\.?(0+)?")
    			len1 = LENGTH(Matches.Item(0).SubMatches(0))
    			len2 = LENGTH(Matches.Item(0).SubMatches(1))
    			DIM arr[] = LENGTH(INT(serial)), len1
    			IFB POS(".", format) THEN
    				RESULT = REPLACE(FORMAT(serial, CALCARRAY(arr, CALC_MAX) + len2 + 1, len2), " ", "0")
    			ELSE
    				RESULT = REPLACE(FORMAT(serial, CALCARRAY(arr, CALC_MAX)), " ", "0")
    			ENDIF
    	SELEND
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   str : 時刻文字列。hh:nn:ss AM/PM、hh:nn AM/PM、hh AM/PM、hh:nn:ss、hh:nn、hh時nn分ss秒、hh時nn分のいずれかの形式を指定。 
    // 【戻り値】
    //   シリアル値 (例)0…00:00:00、0.5…12:00:00、0.999988425925926…23:59:59 
    //////////////////////////////////////////////////
    FUNCTION timeValue(str)
    	DIM serial = 0
    	DIM Matches
    	DIM pattern = "(\d+)"
    	DIM hh = "(0?[0-9]|1[0-2])"
    	DIM ampm = "([AP]M|[ap]m)"
    	SELECT TRUE
    		CASE reTest(str, "\b" + hh + ":" + pattern + ":" + pattern + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + ":" + pattern + ":" + pattern + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = timeValue(.SubMatches(0) + " " + .SubMatches(3)) + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + hh + ":" + pattern + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + ":" + pattern + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = timeValue(.SubMatches(0) + " " + .SubMatches(2)) + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		CASE reTest(str, "\b" + hh + " " + ampm + "\b")
    			Matches = reExecute(str, "\b" + hh + " " + ampm + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0) MOD 12) + IIF(reTest(.SubMatches(1), "AM|am"), 0, 12)
    				serial = serial / 24
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + ":" + pattern + ":" + pattern + "\b")
    			Matches = reExecute(str, "\b" + pattern + ":" + pattern + ":" + pattern + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + ":" + pattern + "\b")
    			Matches = reExecute(str, "\b" + pattern + ":" + pattern + "\b")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + "時" + pattern + "分" + pattern + "秒")
    			Matches = reExecute(str, "\b" + pattern + "時" + pattern + "分" + pattern + "秒")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440 + VAL(.SubMatches(2)) / 86400
    			ENDWITH
    		CASE reTest(str, "\b" + pattern + "時" + pattern + "分")
    			Matches = reExecute(str, "\b" + pattern + "時" + pattern + "分")
    			WITH Matches.Item(0)
    				serial = VAL(.SubMatches(0)) / 24 + VAL(.SubMatches(1)) / 1440
    			ENDWITH
    		DEFAULT
    			serial = ERR_VALUE
    	SELEND
    	RESULT = serial - INT(serial)
    FEND
    
    //////////////////////////////////////////////////
    // 【引数】
    //   arrayname : 上限値を求める配列の名前 
    //   dimension : 返す次元を示す整数 
    // 【戻り値】
    //   配列の上限値 
    //////////////////////////////////////////////////
    FUNCTION UBound(arrayname[], dimension = 1)
    	RESULT = EVAL("RESIZE(arrayname" + strRepeat("[0]", dimension - 1) + ")")
    FEND

プログラム実行例

アクティブウィンドウの左上にカーソルを移動

UWSC
DIM ID = GETID(GET_ACTIVE_WIN)

DIM x = STATUS(ID, ST_X)
DIM y = STATUS(ID, ST_Y)

MMV(x, y)
使用関数
解説(自動生成)

マウスカーソルをランダムな位置に移動

UWSC
DIM x = G_SCREEN_W
DIM y = G_SCREEN_H

MMV(RANDOM(x), RANDOM(y))
使用関数
解説(自動生成)

マウスカーソル下のウィンドウの左上の座標に移動する

UWSC
MOUSEORG(GETID(GET_FROMPOINT_WIN))
MMV(0, 0)
使用関数
解説(自動生成)

関連記事

GETKEYSTATE関数 (スクリプト関数)
キーコードの状態を取得します。
LOCKHARDEX関数 (スクリプト関数)
キーボード、マウスからの入力を禁止します。
MOUSEORG関数 (スクリプト関数)
マウス座標を相対座標にする、またはマウスとキー情報を直接ウィンドウへ送ります。
MUSCUR関数 (スクリプト関数)
マウスカーソル種別を返します。